Khi vàng trở thành case study kinh điển cho tư duy định lượng

29/10/2025

471 lượt đọc

1. Một năm mà dữ liệu lịch sử “bó tay”

Nếu bạn nhìn lại chuỗi giá vàng từ năm 2000 đến nay, sẽ thấy một điều: dù biến động, vàng vẫn là tài sản có “pattern” khá ổn định.

  1. Trung bình lợi nhuận năm khoảng 7–9%.
  2. Volatility (độ biến động) quanh 12–18%.
  3. Những cú sốc lớn (như 2008, 2011, 2020) đều có nguyên nhân rõ ràng và mô hình có thể “fit” lại được.

Nhưng 2025 là ngoại lệ.

Vàng đã có giai đoạn tăng gần 70% chỉ trong nửa đầu năm, rồi giảm mạnh gần 25% trong vài tháng tiếp theo — một biên độ mà Value-at-Risk (VaR) truyền thống không hề dự báo được.

Nếu bạn chạy VaR 99% theo dữ liệu 10 năm gần nhất, mức lỗ kỳ vọng 1 ngày chỉ khoảng 1.8–2%, nhưng thực tế có những phiên giảm hơn 5%.

Từ góc nhìn định lượng, đây là hiện tượng “regime shift” – thị trường bước sang một trạng thái khác mà phân phối xác suất, độ lệch chuẩn, thậm chí tương quan giữa vàng và USD đều thay đổi hoàn toàn.

Cụ thể:

  1. Trong chu kỳ 2020–2024, vàng có tương quan âm khoảng -0.45 với USD Index.
  2. Nhưng sang 2025, hệ số này chuyển thành +0.15, phản ánh dòng tiền trú ẩn không còn đơn thuần dựa trên mô hình cũ.

Điều này cho thấy: mọi mô hình dựa trên dữ liệu lịch sử đều có hạn, vì bản chất thị trường không “tĩnh” như vật lý, mà là hệ thống xã hội động, nơi tâm lý, chính sách và kỳ vọng cùng tham gia.

2. Historical Simulation – công cụ để hiểu rủi ro, không phải để dự đoán

Trong thế giới Quant, Historical Simulation (HS) là một kỹ thuật phổ biến để đánh giá rủi ro danh mục hoặc biến động giá tài sản.

Cách làm cơ bản như sau:

  1. Thu thập chuỗi lợi nhuận (log returns) của vàng trong 25 năm qua.
  2. Tái mô phỏng (resample) hàng ngàn kịch bản ngẫu nhiên dựa trên dữ liệu thực tế.
  3. Tính toán phân phối kết quả để xem xác suất lỗ/lãi trong các trường hợp khác nhau.

Ví dụ:

Giả sử bạn lấy dữ liệu giá vàng ngày từ 2000–2024 (~6000 điểm dữ liệu).

  1. Trung bình log return ngày: 0.04%
  2. Độ lệch chuẩn: 1.1%
  3. Sau 10.000 lần mô phỏng (resampling 252 phiên/năm), bạn có thể vẽ được phân phối lợi nhuận 1 năm.
  4. Kết quả cho thấy:
  5. 5% xác suất tệ nhất: lợi nhuận năm âm -12%
  6. 5% tốt nhất: lợi nhuận vượt +28%

Nhưng điều đáng chú ý là:

Năm 2025, lợi nhuận thực tế đang ở +50%, tức vượt ra khỏi toàn bộ phân phối mô phỏng.

Điều này không có nghĩa mô hình sai – mà là mô hình chỉ mô phỏng “quá khứ”, trong khi thị trường lại tạo ra “một tương lai chưa từng có”.

Đó chính là giới hạn mà Quant nào cũng phải chấp nhận:

Mô hình chỉ giỏi ở việc định lượng rủi ro trong thế giới cũ – chứ không thể tiên đoán thế giới mới.

Một cách cải thiện là dùng Block Bootstrapping, hoặc thêm yếu tố Regime Classification (phân loại chu kỳ thị trường bằng Machine Learning) để mô phỏng theo từng pha khác nhau: “risk-on”, “risk-off”, “policy-driven”, “geopolitical shock”.

Nhưng ngay cả khi mô hình tinh vi hơn, nó vẫn phụ thuộc vào một giả định nền tảng: “hành vi con người sẽ không thay đổi quá nhiều” — điều mà năm 2025 đã chứng minh là sai.

3. Khi Quant cần bước ra khỏi mô hình

Cốt lõi của tư duy định lượng không phải là “tin vào mô hình”, mà là biết khi nào nên nghi ngờ mô hình.

Với các desk giao dịch định lượng chuyên vàng hoặc hàng hóa, năm 2025 có lẽ là case điển hình cho 3 bài học lớn:

(1) Không có mô hình nào bất biến.

Chiến lược Mean Reversion hay Momentum từng hiệu quả trong chu kỳ lãi suất cao có thể thất bại hoàn toàn khi chính sách đảo chiều.

Khi Fed cắt lãi suất bất ngờ quý II/2025, các mô hình CTA (Commodity Trading Advisors) dựa trên trend-following đều chịu drawdown lớn do đảo pha nhanh.

(2) Data-driven không đồng nghĩa với Blind-driven.

Một số Quant chỉ chạy backtest, optimize thông số đến mức “curve fitting” nhưng thực tế chỉ cần một biến số chính sách hoặc tin vĩ mô, mô hình ấy lập tức “cháy”.

Đó là lý do nhiều team ngày nay kết hợp Macro overlay: định lượng nhưng vẫn giám sát khung chính sách, dòng tiền ETF, và biến động vị thế CFTC (Commitment of Traders).

(3) Rủi ro lớn nhất không nằm trong mô hình, mà nằm ở giả định.

Giả định rằng “phân phối lợi nhuận là ổn định”, “volatility sẽ mean-revert”, hay “correlation là tĩnh” — đều là những chiếc bẫy tâm lý khiến mô hình gãy khi thực tế đổi pha.

Kết luận – Khi mô hình không còn dự đoán được, hãy quay về nguyên lý rủi ro

Historical Simulation hay bất kỳ kỹ thuật định lượng nào đều có giá trị, nếu ta hiểu đúng mục đích của nó: mô phỏng, không dự đoán.

Dữ liệu giúp ta hiểu “điều gì đã từng xảy ra”, nhưng đầu tư là việc chuẩn bị cho điều chưa từng xảy ra.

Chia sẻ bài viết

Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Danh mục của bạn đang ngầm giả định điều gì về tương lai thị trường?
05/02/2026
33 lượt đọc

Danh mục của bạn đang ngầm giả định điều gì về tương lai thị trường? C

Một danh mục đầu tư, dù được xây dựng cẩn trọng đến đâu, cũng luôn chứa đựng những giả định ngầm về tương lai. Những giả định này hiếm khi được viết ra thành lời, nhưng lại quyết định cách danh mục phản ứng khi thị trường đi vào những trạng thái bất lợi. Vấn đề không nằm ở việc có giả định hay không, mà ở chỗ nhà đầu tư có ý thức được những giả định đó hay không.

Khủng hoảng tài chính không phải thiên nga đen, nó lặp lại theo cấu trúc
05/02/2026
42 lượt đọc

Khủng hoảng tài chính không phải thiên nga đen, nó lặp lại theo cấu trúc C

Trong diễn giải phổ biến về thị trường tài chính, các cuộc khủng hoảng lớn thường được mô tả như những sự kiện hiếm, bất ngờ và không thể dự đoán – thường được gọi chung dưới khái niệm “thiên nga đen”.

Top 5 hành vi khiến nhà đầu tư thua không phải vì thiếu kiến thức, mà vì…
04/02/2026
57 lượt đọc

Top 5 hành vi khiến nhà đầu tư thua không phải vì thiếu kiến thức, mà vì… C

Nhiều người nghĩ thua lỗ đến từ việc chọn sai cổ phiếu, vào sai điểm, hoặc thiếu công cụ phân tích. Nhưng nếu nhìn đủ lâu, bạn sẽ thấy một thứ lặp đi lặp lại ở hầu hết tài khoản: thua lỗ thường xuất phát từ hành vi, không phải từ “thiếu chỉ báo”.

Năm chỉ báo quen thuộc – và cách chúng thực sự được dùng trong chiến lược trend-following
01/02/2026
108 lượt đọc

Năm chỉ báo quen thuộc – và cách chúng thực sự được dùng trong chiến lược trend-following C

Trong trading, “theo xu hướng” (trend-following) là một trong những khái niệm được nhắc tới nhiều nhất, nhưng cũng bị hiểu sai nhiều nhất. Không ít người nghĩ rằng trend-following đơn giản là mua khi giá tăng, bán khi giá giảm, hoặc gắn vài chỉ báo lên chart rồi chờ tín hiệu.

Bollinger Bands là gì, dùng thế nào, và vì sao chiến lược “quen mà sai” xuất hiện rất nhiều?
01/02/2026
99 lượt đọc

Bollinger Bands là gì, dùng thế nào, và vì sao chiến lược “quen mà sai” xuất hiện rất nhiều? C

Bollinger Bands thường được giới thiệu như một công cụ “đơn giản mà hiệu quả”. Giá chạm dải trên thì được coi là quá mua, chạm dải dưới thì được coi là quá bán. Ý tưởng nghe rất tự nhiên: giá đi quá xa mức trung bình thì sẽ quay về. Với nhiều nhà đầu tư mới, đây là một trong những chiến lược đầu tiên họ tiếp cận, vì nó trực quan, dễ hiểu và có vẻ rất hợp lý về mặt logic.

Relative Strength Index (RSI): vì sao chỉ báo quen thuộc này thường bị hiểu sai?
28/01/2026
129 lượt đọc

Relative Strength Index (RSI): vì sao chỉ báo quen thuộc này thường bị hiểu sai? C

Relative Strength Index (RSI) là một trong những chỉ báo kỹ thuật phổ biến nhất trên thị trường tài chính. Với rất nhiều nhà đầu tư, RSI gần như đồng nghĩa với một quy tắc đơn giản: RSI trên 70 là quá mua, dưới 30 là quá bán. Từ đó, RSI được sử dụng như một công cụ bắt đỉnh đáy trực quan, nhanh gọn và “có vẻ hợp lý”.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!