[P2] Tổng hợp các phương pháp đánh giá rủi ro và hiệu suất trong đầu tư

22/04/2024

8,782 lượt đọc

Phần II - Tổng hợp các phương pháp đánh giá rủi ro và hiệu suất trong đầu tư 

Tiếp nối bài viết trong Phần 1 về 2 phương pháp đánh giá rủi ro và hiệu suất đầu tư là Sharpe và Sortino. Trong phần 2 này, QM Capital sẽ tập trung vào 3 phương pháp còn lại tỷ lệ Omega, tỷ lệ Calmar và tỷ lệ sụt giảm tối đa (Max Drawdown), mỗi công cụ đều có những ưu điểm riêng trong việc cung cấp cái nhìn sâu sắc về hiệu suất rủi ro và lợi nhuận của danh mục đầu tư. Những phương pháp này không chỉ giúp nhà đầu tư đánh giá bối cảnh hiện tại mà còn hỗ trợ dự đoán và chuẩn bị cho những biến động bất ngờ của thị trường. 

1. Tỷ lệ Omega

1.1. Giới thiệu về tỷ lệ Omega

Tỷ lệ Omega là một chỉ số đánh giá hiệu suất được sử dụng trong tài chính để đánh giá lợi nhuận điều chỉnh rủi ro của một khoản đầu tư. Tỷ lệ này tương tự như các chỉ số khác như Tỷ số Sharpe, nhưng đặt nhiều trọng tâm hơn vào phần đuôi của phân phối lợi nhuận.

Tỷ số Omega là tỷ lệ giữa lợi nhuận vượt qua một mức ngưỡng nhất định (thường là lợi nhuận tối thiểu chấp nhận (MAR)) so với tổng rủi ro ở phía dưới mức ngưỡng đó. Chỉ số này có thể cung cấp cái nhìn sâu sắc về hiệu suất điều chỉnh rủi ro của một danh mục đầu tư hoặc chiến lược đầu tư.

Một giá trị Tỷ số Omega cao nói chung chỉ ra một sự đánh đổi tốt giữa tiềm năng lợi nhuận và rủi ro của những tổn thất đáng kể. Ngược lại, một giá trị thấp cho thấy sự cân bằng lợi ích-rủi ro kém.

1.2. Ý nghĩa của tỷ lệ Omega 

Omega > 1: Cho thấy hiệu suất điều chỉnh rủi ro tốt. Danh mục đầu tư có khả năng cao đạt được lợi nhuận trên mức mục tiêu và khả năng thua lỗ đáng kể thấp.

Omega = 1: Giá trị ngưỡng phù hợp với lợi nhuận trung bình của khoản đầu tư. Danh mục có 50% khả năng đạt được lợi nhuận trên mức mục tiêu và 50% khả năng thua lỗ đáng kể.

Omega < 1: Cho thấy danh mục có khả năng thấp đạt được lợi nhuận trên mức mục tiêu và khả năng thua lỗ cao hơn, cho thấy hiệu suất điều chỉnh rủi ro kém.

Công thức của tỷ lệ Omega: 

OmegaRatio=RpMAR1nt=1nmax[(MARrt),0]+1\text{OmegaRatio} = \frac{R_p - \text{MAR}}{\frac{1}{n} \sum_{t=1}^{n} \max{[(\text{MAR} - r_t ), 0]}} + 1

Trong đó: 

  1. Rp: Lợi nhuận kỳ vọng của tài sản hoặc danh mục đầu tư
  2. MAR: Lợi nhuận tối thiểu chấp nhận được
  3. rt: Lợi nhuận vào ngày t
  4. n: Độ dài kỳ hạn

1.3. Hạn chế của tỷ lệ Omega 

Tỷ lệ Omega là một công cụ có giá trị để đánh giá hiệu suất điều chỉnh rủi ro của danh mục hoặc chiến lược đầu tư, giống như bất kỳ các phương pháp nào để đo lường rủi ro và hiệu suất, Omega cũng có những hạn chế: 

Mức ngưỡng: Tỷ số Omega dựa trên một mức ngưỡng, thường được đặt tại mức lợi nhuận tối thiểu chấp nhận được (MAR) cho nhà đầu tư. Điều này có nghĩa là sự lựa chọn của mức ngưỡng có thể ảnh hưởng đến tỷ số, và các nhà đầu tư khác nhau có thể có các mức ngưỡng khác nhau, khiến việc so sánh hiệu suất của các danh mục hoặc chiến lược đầu tư khác nhau trở nên khó khăn.

Rủi ro đuôi: Tỷ số Omega là một biện pháp tốt để đo lường rủi ro đuôi, nhưng nó không xem xét các loại rủi ro khác, chẳng hạn như rủi ro lãi suất, rủi ro tiền tệ, rủi ro thanh khoản, v.v.

Nhạy cảm với ngoại lệ: Tỷ số Omega nhạy cảm với ngoại lệ, có nghĩa là tỷ lệ này bị ảnh hưởng đáng kể bởi các sự kiện cực đoan hoặc hiếm gặp. Điều này có thể khiến việc sử dụng tỷ số để so sánh hiệu suất của các danh mục hoặc chiến lược đầu tư khác nhau qua các giai đoạn khác nhau trở nên khó khăn.

Hạn chế bởi dữ liệu lịch sử: Việc tính toán tỷ số Omega dựa trên dữ liệu lịch sử, điều này có nghĩa là khả năng có sẵn và chất lượng của dữ liệu có thể ảnh hưởng đáng kể đến các giá trị được tính toán. Ngoài ra, dữ liệu lịch sử không thể được sử dụng để dự đoán hiệu suất tương lai của một khoản đầu tư.

1.4. Phân tích tỷ lệ Omega hàng năm của VOO Vanguard S&P 500 ETF bằng Python

import pandas as pd
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

tickerSymbol = "VOO"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2010-1-1')
tickerDf['returns'] = tickerDf['Close'].pct_change()
MAR = 0 # Minimum Acceptable Return

# Omega Ratio calculation
omega_ratio = tickerDf['returns'].rolling(252).apply(lambda x: np.sum(x[x > MAR]) / np.sum(-x[x < MAR]))

# Aesthetics
plt.figure(figsize=(15, 7))
plt.style.use('seaborn-darkgrid')
palette = plt.get_cmap('Set1')

# Plot Omega Ratio
ax1 = plt.gca()
ax1.plot(omega_ratio.index, omega_ratio, color=palette(0), linewidth=1.5, label='Omega Ratio')

# Plotting a simple moving average of the omega ratio
ax1.plot(omega_ratio.index, omega_ratio.rolling(window=252).mean(), color='orange', linestyle='--', label='1-Year MA')

# Horizontal line for benchmark Omega Ratio of 1
ax1.axhline(y=1, color='red', linestyle='-.', label='Benchmark (1)')

# Shade region where Omega Ratio is above 1
ax1.fill_between(omega_ratio.index, omega_ratio, 1, where=(omega_ratio > 1), color='green', alpha=0.3,
                 label='Above Benchmark')

# Aesthetics for Omega Ratio
ax1.set_ylabel('Omega Ratio', fontsize=14, color=palette(0))
ax1.legend(loc='upper left')
ax1.set_title(f'Rolling 1-Year Omega Ratio with Stock Price (MAR: {MAR*100}%)', fontsize=16)

# Stock Price Plot on secondary y-axis
ax2 = ax1.twinx()
ax2.plot(tickerDf.index, tickerDf['Close'], color=palette(1), alpha=0.4, label='Stock Price')
ax2.set_ylabel('Stock Price', fontsize=14, color=palette(1))

plt.tight_layout()
plt.show()

Ví dụ Phân tích tỷ lệ Omega hàng năm của VOO Vanguard S&P 500 ETF bằng Python

2. Tỷ lệ Calmar

2.1. Giới thiệu về tỷ lệ Calmar

Tỷ lệ Calmar là một chỉ số đo hiệu suất điều chỉnh theo rủi ro của một danh mục đầu tư. Được phát triển bởi Terry W. Young, người đặt tên theo California Managed Accounts Reports (CALMAR) vào năm 1990, tỷ lệ này đóng vai trò là thước đo hiệu suất mạnh mẽ. Điểm khác biệt chính giữa tỷ lệ Calmar và tỷ lệ Sharpe là tỷ lệ này được tính toán bằng cách sử dụng mức sụt giảm tối đa làm thước đo rủi ro.

2.2. Ý nghĩa của kết quả tỷ lệ Calmar:

Khi so sánh các quỹ đầu tư hoặc danh mục đầu tư với nhau, nhà đầu tư nên xem xét cả lợi nhuận của khoản đầu tư và các rủi ro liên quan đến nó. Và các quỹ cho thấy lợi nhuận cao hơn mà không phải chịu rủi ro lớn hơn được coi là các khoản đầu tư tốt hơn. Tỷ số Calmar được thiết kế để giúp hiểu liệu lợi nhuận cao hơn có liên quan đến rủi ro cao hơn hay không.

  1. Tỷ lệ Calmar âm có nghĩa là lãi suất không rủi ro cao hơn lợi nhuận của danh mục. Các giá trị dưới không không mang lại thông tin có ý nghĩa.
  2. Tỷ lệ Calmar từ 0 đến 1.0 cho thấy lợi nhuận của danh mục không vượt quá mức giảm giá tối đa trong một khoảng thời gian nhất định.
  3. Tỷ lệ Calmar trên 1.0 cho thấy lợi nhuận vượt nhẹ qua mức giảm giá. Khoản đầu tư này có thể được coi là rủi ro.
  4. Tỷ lệ Calmar trên 3.0 cho thấy lợi nhuận vượt trội so với mức giảm giá. Đây có thể là một chỉ báo của một khoản đầu tư ổn định.
  5. Tất cả các điều kiện khác ngang bằng, một quỹ hoặc danh mục đầu tư có tỷ số Calmar cao hơn là khoản đầu tư được ưu tiên.

Ví dụ: Giả sử giá trị của tỷ số Calmar cho một danh mục hoặc quỹ là 2, điều này có nghĩa là trong khoảng thời gian được chọn, lợi nhuận hàng năm vượt quá hai lần mức giảm giá tối đa.

Công thức:

Tỷ lệ Calmar = (Rp - Rf) /MD

Trong đó: 

  1. Rp: Lợi nhuận danh mục đầu tư hàng năm
  2. Rf: Lãi suất phi rủi ro hàng năm
  3. MD (Max Drawdown): Mức sụt giảm tối đa 

2.3. Hạn chế của tỷ lệ Calmar trong đầu tư

  1. Phụ thuộc vào khoảng thời gian phân tích: Tỷ số Calmar nhạy cảm với khoảng thời gian được chọn để phân tích, dẫn đến kết quả không nhất quán. Các khung thời gian khác nhau có thể mang lại các mức giảm tối đa khác nhau, ảnh hưởng đến tỷ số Calmar tổng thể.
  2. Nhạy cảm với các sự kiện ngoại lệ: Tỷ lệ Calmar rất dễ bị ảnh hưởng bởi mức giảm tối đa, có thể bị tác động đáng kể bởi các sự kiện cực đoan hoặc ngoại lệ. Điều này dẫn đến làm méo mó trong việc đánh giá hiệu suất điều chỉnh theo rủi ro.
  3. Gặp khó khăn trong việc so sánh giữa các lớp tài sản: Việc so sánh tỷ lệ Calmar giữa các lớp tài sản khác nhau sẽ gặp khó khăn do sự khác biệt giữa rủi ro - lợi nhuận và bản chất của các mức giảm. Điều quan trọng là nhà đầu tư cần xem xét bối cảnh và đặc điểm cụ thể của từng lớp tài sản khi sử dụng tỷ lệ Calmar cho việc so sánh.

2.4. Cách sử dụng tỷ lệ Calmar hiệu quả

Sử dụng nhiều phép đo hiệu suất: Để có được cái nhìn toàn diện về hiệu suất điều chỉnh theo rủi ro của khoản đầu tư, điều cần thiết là sử dụng nhiều phép đo hiệu suất. Tỷ lệ Calmar nên được sử dụng kết hợp với các phép đo hiệu suất điều chỉnh theo rủi ro khác, như Tỷ lệ Sharpe, Tỷ lệ Sortino, Tỷ lệ Treynor và Tỷ lệ Omega.

Xem xét khoảng thời gian đầu tư: Tỷ lệ Calmar sẽ cần xem xét đối với các khoản đầu tư có khoảng thời gian dài hơn, vì những biến động giá trị ngắn hạn có thể làm “méo” mức rút vốn tối đa.

Theo dõi và cập nhật thường xuyên: Nhà đầu tư nên thường xuyên theo dõi và cập nhật các tính toán Tỷ lệ Calmar để đảm bảo rằng nhà đầu tư đang đưa ra quyết định dựa trên dữ liệu mới nhất. Điều này đặc biệt quan trọng trong thời điểm thị trường biến động hoặc khi có những thay đổi đáng kể trong chiến lược đầu tư hoặc danh mục đầu tư.

2.5. Phân tích tỷ lệ Calmar hàng năm của VISA bằng Python

import pandas as pd
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

tickerSymbol = "V"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2010-1-1')
tickerDf['returns'] = tickerDf['Close'].pct_change()

# Calmar Ratio calculation
calmar_ratio = tickerDf['returns'].rolling(252).apply(lambda x: (1 + x).cumprod()[-1] ** (252.0 / len(x)) / np.abs(x.min()))

# Threshold for Calmar Ratio
threshold_calmar = calmar_ratio.mean()

plt.figure(figsize=(15, 7))
plt.style.use('seaborn-darkgrid')
palette = plt.get_cmap('Set1')

ax1 = plt.gca()
ax1.plot(calmar_ratio.index, calmar_ratio, color=palette(0), linewidth=1.5, label='Calmar Ratio')
ax1.plot(calmar_ratio.index, calmar_ratio.rolling(window=252).mean(), color='orange', linestyle='--', label='1-Year MA')
ax1.axhline(y=threshold_calmar, color='red', linestyle='--', label=f'Threshold (Mean: {threshold_calmar:.2f})')
ax1.set_title('Rolling 1-Year Calmar Ratio with Stock Price', fontsize=16)
ax1.set_ylabel('Calmar Ratio', fontsize=14)
ax1.legend(loc='upper left')

ax2 = ax1.twinx()
ax2.plot(tickerDf.index, tickerDf['Close'], color=palette(1), alpha=0.4, label='Stock Price')
ax2.set_ylabel('Stock Price', fontsize=14)

plt.tight_layout()
plt.show()

Ví dụ Phân tích tỷ lệ Calmar hàng năm của VISA bằng Python

3. Mức sụt giảm tối đa (Maximum Drawdown) 

3.1. Giới thiệu

Maximum Drawdown hay còn gọi là mức rút vốn tối đa là chỉ mức sụt giảm tối đa của tài khoản tính từ ở đỉnh vốn cao nhất đến phần đáy vốn thấp nhất tiếp theo sau đỉnh vốn đó. Maximum Drawdown của tài khoản giao dịch sẽ không được ghi nhận cho đến khi biến động vượt đỉnh, đáy thấp nhất.

Biểu đồ thể hiện Maximum Drawdown

Công thức 

Maximum Drawdown (%) = (Đáy vốn - Đỉnh vốn)/Đỉnh vốn×100%

Ví dụ cách tính Maximum Drawdown

Ví dụ cách tính Maximum Drawdown

3.2. Maximum Drawdown quan trọng như thế nào đối với các nhà đầu tư?

Đánh giá rủi ro: Mức rút vốn tối đa cung cấp cho nhà đầu tư thước đo rõ ràng về rủi ro giảm giá của một khoản đầu tư. Bằng cách hiểu được một khoản đầu tư có thể giảm giá trị bao nhiêu trong điều kiện thị trường không thuận lợi, nhà đầu tư có thể đánh giá mức độ rủi ro họ đang phải đối mặt và đưa ra các quyết định sáng suốt về quản lý danh mục đầu tư và phân bổ tài sản.

Đo lường biến động: Mức rút vốn tối đa có liên quan chặt chẽ với biến động, là một chỉ số đo lường sự thay đổi giá cả hay giá trị của một khoản đầu tư theo thời gian. Các sụt giảm giá lớn thường cho thấy biến động cao hơn. Nhà đầu tư nhạy cảm với biến động có thể sử dụng Max Drawdown như một phương tiện để đánh giá sự ổn định và khả năng dự đoán của một khoản đầu tư.

Quản lý rủi ro: Max Drawdown giúp nhà đầu tư thực hiện các chiến lược quản lý rủi ro để bảo vệ danh mục đầu tư khỏi những mất mát đáng kể. Bằng cách đặt ngưỡng chấp nhận sụt giảm giá trị được định trước, nhà đầu tư có thể thiết lập các lệnh dừng lỗ hoặc thực hiện các kỹ thuật phòng ngừa để hạn chế rủi ro giảm giá và bảo toàn vốn. 

3.3.Phân tích mức rút vốn tối đa (Max Drawdown) hàng năm của Coca-Cola bằng Python

import pandas as pd
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

tickerSymbol = "KO"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2010-1-1')
tickerDf['returns'] = tickerDf['Close'].pct_change()

rolling_cumulative = (1 + tickerDf['returns']).cumprod()
rolling_max = rolling_cumulative.rolling(252, min_periods=1).max()
rolling_drawdown = (rolling_cumulative - rolling_max) / rolling_max

plt.figure(figsize=(15, 7))
ax1 = plt.gca()
ax1.plot(rolling_drawdown, label='Rolling Maximum Drawdown', linewidth=1.5, color='red')
ax1.set_title('Rolling 1-Year Maximum Drawdown with Stock Price', fontsize=16)
ax1.set_ylabel('Max Drawdown', fontsize=14)
ax1.legend()

ax2 = ax1.twinx()
ax2.plot(tickerDf['Close'], color='grey', alpha=0.3, label='Stock Price')
ax2.set_ylabel('Stock Price', fontsize=14)

plt.tight_layout()
plt.show()


📌 Link Google Colab: Tổng hợp các phương pháp đánh giá rủi ro và hiệu suất trong đầu tư


Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Các Loại Quỹ Định Lượng và Chiến Lược Giao Dịch của Qũy
10/12/2025
48 lượt đọc

Các Loại Quỹ Định Lượng và Chiến Lược Giao Dịch của Qũy C

Quỹ đầu tư định lượng (quant funds) đã trở thành một phần không thể thiếu trong các thị trường tài chính hiện đại. Với sự phát triển mạnh mẽ của công nghệ và dữ liệu, các quỹ này sử dụng những mô hình toán học và thuật toán để xây dựng chiến lược giao dịch. Tuy nhiên, một trong những điểm đặc biệt của các quỹ định lượng là việc họ áp dụng rất nhiều chiến lược giao dịch khác nhau, từ theo xu hướng (trend-following) cho đến chiến lược phản xu hướng (countertrend). Mỗi loại quỹ lại có một cách tiếp cận riêng và được xây dựng trên những nguyên lý khác nhau, và chúng hoạt động tốt nhất trong những điều kiện thị trường nhất định.

Khi những trò chơi chiến lược tạo ra những đột phá trong tài chính
09/12/2025
393 lượt đọc

Khi những trò chơi chiến lược tạo ra những đột phá trong tài chính C

Trước những năm 1970, ngành tài chính hoạt động trong một khuôn khổ bảo thủ và bị kiểm soát chặt chẽ. Các sản phẩm tài chính chủ yếu là các công cụ truyền thống như ngân hàng, cổ phiếu, và trái phiếu, và tất cả đều có lãi suất và tỷ giá cố định. Thị trường chứng khoán thời đó không có nhiều cơ hội để sáng tạo hay phát triển các chiến lược đầu tư phức tạp, vì sự biến động của giá cổ phiếu được cho là gần như ngẫu nhiên và không thể dự đoán được. Chính vì vậy, ngành tài chính không thu hút nhiều sự chú ý về mặt trí tuệ, và các học giả thời bấy giờ cũng cho rằng giá cổ phiếu thay đổi một cách ngẫu nhiên, không có quy luật rõ ràng để nghiên cứu.

Có nên xây dựng hệ thống Backtester của riêng bạn?
08/12/2025
60 lượt đọc

Có nên xây dựng hệ thống Backtester của riêng bạn? C

Việc phát triển một chiến lược giao dịch mạnh mẽ trong môi trường tài chính không chỉ đơn giản là chọn đúng tài sản hay đúng công cụ. Một yếu tố quan trọng không thể thiếu trong việc đánh giá và kiểm tra các chiến lược giao dịch chính là hệ thống backtesting (kiểm thử chiến lược). Trong bài viết này, chúng ta sẽ cùng tìm hiểu liệu có nên tự xây dựng một hệ thống backtester cho mình hay không, đặc biệt khi có rất nhiều công cụ sẵn có hiện nay, từ những phần mềm mở đến các giải pháp chuyên nghiệp. Việc tự xây dựng backtester không chỉ là một công cụ để kiểm tra chiến lược, mà còn là một cách để bạn hiểu sâu hơn về những yếu tố ẩn giấu trong các mô hình giao dịch của mình.

Top 5 cuốn sách cơ bản cần đọc về Giao dịch định lượng
08/12/2025
78 lượt đọc

Top 5 cuốn sách cơ bản cần đọc về Giao dịch định lượng C

Giao dịch định lượng (Algorithmic Trading) thường được xem là một lĩnh vực khá phức tạp đối với người mới bắt đầu. Với sự kết hợp giữa toán học, thống kê và công nghệ, nó có thể khiến không ít người cảm thấy e ngại khi mới tiếp cận. Tuy nhiên, như câu nói nổi tiếng: "Đừng bao giờ sợ bắt đầu lại. Những khởi đầu nhỏ có thể dẫn tới những thành công lớn". Và trong thế giới giao dịch định lượng, điều này hoàn toàn đúng. Với sự học hỏi và thực hành không ngừng, bạn sẽ dần làm chủ được lĩnh vực này.

Mean reversion và vai trò cung cấp thanh khoản: Cách thị trường tạo ra lợi nhuận thông qua biến động giá
06/12/2025
90 lượt đọc

Mean reversion và vai trò cung cấp thanh khoản: Cách thị trường tạo ra lợi nhuận thông qua biến động giá C

Trong tài chính, chiến lược mean reversion (quay lại giá trị trung bình) là một trong những chiến lược giao dịch lâu đời và phổ biến nhất, đặc biệt trong các thị trường có biến động mạnh. Cốt lõi của chiến lược này là giả thuyết rằng sau khi giá của một tài sản có những biến động mạnh (tăng hoặc giảm), giá sẽ có xu hướng quay lại mức giá trung bình trong dài hạn. Tuy nhiên, chiến lược này không chỉ dựa vào các phân tích kỹ thuật hay lý thuyết giá trị tài sản mà còn liên quan mật thiết đến việc cung cấp thanh khoản – một yếu tố quan trọng trong việc xác định sự biến động của giá cả và tạo ra cơ hội lợi nhuận.

Tôi không tin vào may mắn, tôi tin vào xác suất!
04/12/2025
351 lượt đọc

Tôi không tin vào may mắn, tôi tin vào xác suất! C

Khi người ta nói đến may mắn, đó thường là cách chúng ta giải thích những kết quả mà chúng ta không thể lý giải một cách đơn giản. Chúng ta chấp nhận nó như một sự ngẫu nhiên tuyệt vời mà cuộc sống mang lại – như trúng xổ số, thắng lớn trong một cuộc chơi, hay bỗng nhiên nhận được cơ hội lớn trong công việc. Nhưng nếu nhìn nhận sâu hơn, chúng ta sẽ thấy rằng may mắn chỉ là một phần của xác suất.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!