21/03/2024
6,243 lượt đọc
Hiện nay việc ứng dụng công nghệ vào đầu tư chứng khoán ngày càng trở nên phổ biến và việc biết cách ứng dụng chúng vào trong đầu tư chính là lợi thế của bạn. Từ việc nhìn nhận xu hướng, chu kỳ tăng giảm của cổ phiếu, cho đến việc thực hiện kiểm thử hay áp dụng vào các mô hình học máy để dự đoán xu hướng, tất cả đều cần một nguồn dữ liệu đáng tin cậy. Do đó, nhận thấy nhiều người hiện tại vẫn còn đang lấy dữ liệu chứng khoán một cách thủ công nên mình có tổng hợp lại 1 số phương pháp phổ biến trong việc lấy dữ liệu chứng khoán qua những thư viện và chỉ cần với vài dòng code cơ bản trên nền tảng Python sẽ giúp bạn tự động hóa quy trình này rất nhanh và đơn giản.
VNQuant là một thư viện được tạo ra bởi tác giả Phạm Đình Khánh, giúp mọi người truy cập và phân tích dữ liệu thị trường tài chính của Việt Nam. Thư viện này cung cấp các công cụ và chức năng để tải xuống dữ liệu về báo cáo tài chính và các chỉ số cơ bản của doanh nghiệp, đồng thời hỗ trợ phân tích kỹ thuật bằng cách cung cấp các biểu đồ nến, chỉ báo kỹ thuật và nhiều tính năng khác.
Vnstock là thư viện Python được thiết kế bởi tác giả Vũ Thịnh nhằm để tải dữ liệu chứng khoán Việt Nam một cách dễ dàng và hoàn toàn miễn phí. Vnstock sử dụng các nguồn cấp dữ liệu đáng tin cậy, bao gồm nhưng không giới hạn từ công ty chứng khoán và công ty phân tích thị trường tại Việt Nam. Gói thư viện được thiết kế dựa trên nguyên tắc về sự đơn giản và mã nguồn mở, hầu hết các hàm được viết dựa trên thư viện request và pandas có sẵn trên môi trường Google Colab do đó người dùng không cần cài đặt thêm các gói thư viện kèm theo.
Tvdatafeed là một thư viện Python được thiết kế để giúp người dùng tải xuống dữ liệu lịch sử từ nền tảng TradingView. Với Tvdatafeed, người dùng có thể dễ dàng truy cập và sử dụng dữ liệu lịch sử của các tài sản tài chính như cổ phiếu, tiền điện tử, hoặc chỉ số từ TradingView để phục vụ cho mục đích phân tích kỹ thuật và giao dịch.
Bài viết này giới thiệu về những phương pháp phổ biến dựa trên công cụ Python để có thể lấy dữ liệu lịch sử một cách dễ dàng. Hẹn mọi người trong thời gian sớm nhất về những phương pháp cụ thể.
0 / 5
Trong phân tích kỹ thuật, biểu đồ nến là một trong những công cụ phổ biến nhất mà các nhà giao dịch sử dụng để xác định xu hướng, sự biến động giá và các điểm vào/ra giao dịch tiềm năng. Trong số các loại mô hình nến, nến Bullish Marubozu được coi là một dấu hiệu mạnh mẽ cho thấy động lực thị trường đang nghiêng về phía người mua. Trong bài viết này, chúng ta sẽ tìm hiểu chi tiết về mẫu nến Bullish Marubozu, cách nó được hình thành, ý nghĩa, và cách các nhà giao dịch có thể tận dụng nó để đạt lợi thế trên thị trường.
Trong thị trường chứng khoán, việc nhận biết các tín hiệu đảo chiều là một trong những kỹ năng quan trọng giúp nhà đầu tư đưa ra quyết định kịp thời, giảm thiểu rủi ro và tối ưu hóa lợi nhuận. Các mẫu nến đảo chiều mạnh không chỉ là công cụ phân tích kỹ thuật hữu ích mà còn là "kim chỉ nam" để dự đoán sự thay đổi xu hướng giá. Dựa vào các mô hình nến này, nhà đầu tư có thể nhận diện thời điểm thị trường sắp tăng hoặc giảm, từ đó xây dựng chiến lược giao dịch hiệu quả.
Trong quá trình thực hiện backtest một chiến lược giao dịch đơn lẻ hoặc toàn bộ danh mục đầu tư, nhiều nhà giao dịch mắc phải những sai lầm phổ biến. Những lỗi này có thể dẫn đến kết quả backtest không chính xác và khiến chiến lược thất bại khi áp dụng vào thị trường thực tế. Dưới đây là 6 lỗi phổ biến nhất và các cách để tránh chúng, có bổ sung ví dụ và bảng minh họa.
Trong giao dịch, việc backtest một chiến lược là bước đầu tiên để đánh giá tính hiệu quả của nó. Tuy nhiên, việc chỉ dựa vào một kết quả backtest tốt để quyết định áp dụng vào thực tế là một sai lầm phổ biến và tiềm ẩn nhiều rủi ro. Một chiến lược có thể đạt hiệu suất vượt trội trên dữ liệu lịch sử đơn thuần do sự may mắn ngẫu nhiên, nhưng lại thất bại hoàn toàn khi gặp các điều kiện thị trường khác biệt trong tương lai.
Mô phỏng Monte Carlo là một trong những công cụ thống kê quan trọng giúp phân tích và đo lường rủi ro của chiến lược giao dịch. Được ứng dụng rộng rãi trong tài chính, phương pháp này giúp các nhà giao dịch dự đoán các kịch bản có thể xảy ra trên thị trường, từ đó xây dựng các chiến lược có khả năng ứng dụng thực tế cao.
Trong quá trình thực hiện backtest một chiến lược giao dịch đơn lẻ hoặc toàn bộ danh mục đầu tư, nhiều nhà giao dịch mắc phải những sai lầm phổ biến. Những lỗi này có thể dẫn đến kết quả backtest không chính xác và khiến chiến lược thất bại khi áp dụng vào thị trường thực tế. Dưới đây là 6 lỗi phổ biến nhất và các cách để tránh chúng, có bổ sung ví dụ và bảng minh họa.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!