25/03/2024
19,910 lượt đọc
Tiếp nối 2 phần trước về cách lấy dữ liệu lịch sử từ thị trường chứng khoán Việt Nam bằng VNQuant và Vnstock. Bài viết này, QM Capital sẽ giới thiệu một phương pháp khác có thể lấy được dữ liệu của các sàn giao dịch trên thế giới từ Tradingview bằng thư viện Tvdatafeed. Cả 3 phương pháp này đều được sử dụng chung trên nền tảng Python qua những dòng code nên việc lấy hết sức dễ dàng và đơn giản, điều này cũng giúp nhà đầu tư tự động hóa quy trình và nhanh chóng. Tvdatafeed là một thư viện Python được thiết kế để giúp người dùng tải xuống dữ liệu lịch sử từ nền tảng TradingView. Với Tvdatafeed, người dùng có thể dễ dàng truy cập và sử dụng dữ liệu lịch sử của các tài sản tài chính như cổ phiếu, tiền điện tử, hoặc chỉ số từ TradingView để phục vụ cho mục đích phân tích kỹ thuật và giao dịch.

Hình 1.1. Dữ liệu lịch sử của chỉ số VNINDEX được lấy theo giờ
Hình 1.2. Dữ liệu lịch sử của CL1! được lấy từ sàn NYMEX
Hình 1.3. Dữ liệu lịch sử của BTCUSD được lấy từ sàn COINBASE
Dưới đây là Link Google Colab hướng dẫn chi tiết:
Phương pháp 3: Cách lấy dữ liệu từ Tradingview bằng thư viện Tvdatafeed
Trên đây là một số đặc điểm chính và hạn chế của phương pháp lấy dữ liệu lịch sử giá từ Tradingview bằng thư viện Tvdatafeed mà QM Capital đã tổng hợp lại. Qua 3 phương pháp, mỗi phương pháp đều có những ưu và nhược điểm riêng, tùy thuộc vào mục đích sử dụng mà nhà đầu tư lựa chọn linh hoạt. Tóm lại, việc lấy dữ liệu sử dụng công cụ Python ngày càng được phổ biến và có nhiều nguồn thư viện mở giúp nhà đầu tư có thể dễ dàng tiếp cận chỉ với những lệnh code đơn giản, từ đó sẽ giúp nhà đầu tư tự động hóa và tăng hiệu suất.
0 / 5
Trong quantitative trading, việc dự đoán xác suất của một lệnh giao dịch thành công (hay thua lỗ) là một yếu tố quan trọng. Một trong những công cụ phổ biến được sử dụng để dự đoán xác suất này chính là logistic regression. Mặc dù có tên gọi là “regression” (hồi quy), logistic regression lại được thiết kế đặc biệt để giải quyết các vấn đề phân loại, tức là dự đoán xác suất của sự kiện nhị phân (như "win"/"loss", "success"/"failure").
Nếu bỏ hết “mỹ từ” đi, long–short đơn giản là cách tách phần thị trường chung (beta) ra khỏi phần khác biệt do mô hình (alpha). Thay vì chỉ mua những gì mình thích, ta vừa long thứ mình cho là sẽ chạy “tương đối tốt hơn”, vừa short thứ mình cho là sẽ chạy “tương đối kém hơn”, rồi ghép lại thành một danh mục gần như trung hòa với thị trường.
Trong lĩnh vực giao dịch tài chính, việc phát hiện sự thay đổi chế độ của thị trường (regime change) đóng vai trò quan trọng trong việc xác định xu hướng và điều chỉnh chiến lược giao dịch. Hai mô hình phổ biến để phát hiện sự thay đổi chế độ là Breakout Model và Crossover Model. Cả hai mô hình này đều được ứng dụng rộng rãi trong các chiến lược giao dịch tự động (quant trading) và có thể được tối ưu hóa để sử dụng hiệu quả tại thị trường Việt Nam. Trong bài viết này, chúng ta sẽ tìm hiểu sâu về hai mô hình này, cách áp dụng chúng, và cách phát hiện sự thay đổi chế độ trong thị trường tài chính Việt Nam.
Để hiểu được lý do tại sao nến Nhật (Japanese Candlestick) lại là công cụ mạnh mẽ trong giao dịch, ta cần bắt đầu từ khái niệm cơ bản. Mỗi cây nến đại diện cho 4 giá trị quan trọng trong một khoảng thời gian nhất định (tùy thuộc vào khung thời gian mà trader chọn: 1 phiên, 1 giờ, v.v.):
Khối lượng giao dịch (trading volume) là một yếu tố quan trọng không thể thiếu trong bất kỳ chiến lược giao dịch nào, đặc biệt là trong lĩnh vực quant trading. Khối lượng giao dịch giúp các nhà đầu tư đánh giá sự quan tâm và hành vi của thị trường đối với một tài sản, từ đó đưa ra quyết định chính xác về thời điểm tham gia và thoái lui. Đặc biệt tại thị trường phái sinh Việt Nam, nơi sự phát triển còn khá mới mẻ nhưng đang có tốc độ tăng trưởng mạnh mẽ, việc hiểu rõ vai trò và tác động của khối lượng giao dịch là yếu tố không thể thiếu đối với các nhà đầu tư áp dụng chiến lược quant.
Swing trading là kiểu giao dịch dựa trên việc tận dụng những nhịp dao động của thị trường, thường kéo dài vài phiên đến vài tuần. Đây không phải câu chuyện “ngồi canh từng phút từng giây”, mà là cách tiếp cận trung hạn, bám nhịp giá và nhịp dòng tiền. Khi áp dụng vào thị trường Việt Nam, swing trading lại càng phù hợp hơn, đơn giản vì VN-Index và nhóm VN30 luôn tồn tại những dao động vừa đủ lớn để trader có thể tận dụng, nhưng không quá nhiễu như các thị trường crypto hay forex.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!