25/03/2024
18,680 lượt đọc
Tiếp nối 2 phần trước về cách lấy dữ liệu lịch sử từ thị trường chứng khoán Việt Nam bằng VNQuant và Vnstock. Bài viết này, QM Capital sẽ giới thiệu một phương pháp khác có thể lấy được dữ liệu của các sàn giao dịch trên thế giới từ Tradingview bằng thư viện Tvdatafeed. Cả 3 phương pháp này đều được sử dụng chung trên nền tảng Python qua những dòng code nên việc lấy hết sức dễ dàng và đơn giản, điều này cũng giúp nhà đầu tư tự động hóa quy trình và nhanh chóng. Tvdatafeed là một thư viện Python được thiết kế để giúp người dùng tải xuống dữ liệu lịch sử từ nền tảng TradingView. Với Tvdatafeed, người dùng có thể dễ dàng truy cập và sử dụng dữ liệu lịch sử của các tài sản tài chính như cổ phiếu, tiền điện tử, hoặc chỉ số từ TradingView để phục vụ cho mục đích phân tích kỹ thuật và giao dịch.
Hình 1.1. Dữ liệu lịch sử của chỉ số VNINDEX được lấy theo giờ
Hình 1.2. Dữ liệu lịch sử của CL1! được lấy từ sàn NYMEX
Hình 1.3. Dữ liệu lịch sử của BTCUSD được lấy từ sàn COINBASE
Dưới đây là Link Google Colab hướng dẫn chi tiết:
Phương pháp 3: Cách lấy dữ liệu từ Tradingview bằng thư viện Tvdatafeed
Trên đây là một số đặc điểm chính và hạn chế của phương pháp lấy dữ liệu lịch sử giá từ Tradingview bằng thư viện Tvdatafeed mà QM Capital đã tổng hợp lại. Qua 3 phương pháp, mỗi phương pháp đều có những ưu và nhược điểm riêng, tùy thuộc vào mục đích sử dụng mà nhà đầu tư lựa chọn linh hoạt. Tóm lại, việc lấy dữ liệu sử dụng công cụ Python ngày càng được phổ biến và có nhiều nguồn thư viện mở giúp nhà đầu tư có thể dễ dàng tiếp cận chỉ với những lệnh code đơn giản, từ đó sẽ giúp nhà đầu tư tự động hóa và tăng hiệu suất.
0 / 5
Trong vài thập kỷ qua, sự bùng nổ của công nghệ thông tin và phân tích dữ liệu đã làm thay đổi căn bản cách thị trường tài chính vận hành. Một trong những “công cụ” gây ảnh hưởng lớn nhất chính là Black Box Trading – hệ thống giao dịch dựa trên thuật toán, nơi mà logic ra quyết định nằm ẩn trong một cấu trúc lập trình kín, không được công khai.
Trong Quant trading, việc phân tích dữ liệu thị trường không chỉ dừng lại ở các chỉ số tổng hợp như giá mở cửa, đóng cửa, cao nhất, thấp nhất (OHLC) theo khung giờ phút hoặc ngày. Để hiểu sâu cách giá cả được hình thành và biến động trong từng khoảnh khắc, các nhà nghiên cứu và quỹ định lượng (quant funds) dựa vào một loại dữ liệu tinh vi hơn: Tick-by-Tick (TBT) Data. Đây là lớp dữ liệu vi mô (micro-level) phản ánh từng sự kiện trong order book, từ đó cung cấp một bức tranh chi tiết nhất về động lực cung – cầu trên thị trường.
Market Microstructure (Vi cấu trúc thị trường) được định nghĩa bởi National Bureau of Economic Research (NBER) là lĩnh vực tập trung vào kinh tế học của thị trường chứng khoán: cách thức thị trường được thiết kế, cơ chế khớp lệnh, hình thành giá, chi phí giao dịch và hành vi của nhà đầu tư. Nếu ví thị trường tài chính giống như một “cỗ máy”, thì market microstructure chính là bộ phận cơ khí và đường dây điện quyết định chiếc máy đó chạy nhanh, trơn tru hay chậm chạp.
Trong giao dịch tài chính, không phải lúc nào cũng là chuyện “mua rẻ bán đắt”. Với những tổ chức quản lý hàng tỷ USD, bài toán khó nhất lại nằm ở chỗ: làm sao mua/bán khối lượng cực lớn mà không tự tay đẩy giá đi ngược lại mình. Đây chính là lúc khái niệm High Volume Trading (giao dịch khối lượng lớn) xuất hiện.
Trong giao dịch định lượng (Quantitative Trading), việc sử dụng dữ liệu chính xác và có cấu trúc rõ ràng không chỉ giúp nhà đầu tư có cái nhìn tổng quan về thị trường mà còn đóng vai trò quan trọng trong việc đưa ra các quyết định giao dịch chính xác và kịp thời. Tuy nhiên, data handling (xử lý dữ liệu) lại là một bước quan trọng nhưng ít được chú trọng đúng mức. Cùng QM Capital tìm hiểu cách xử lý dữ liệu giúp tối ưu hóa chiến lược giao dịch và tại sao nó lại quan trọng trong Quantitative Trading.
Định lý Bayes, hay còn gọi là Luật Bayes, được đặt theo tên của nhà triết học và thống kê học người Anh Thomas Bayes. Định lý này mô tả cách thức tính toán xác suất của một sự kiện dựa trên kiến thức trước đó về những điều kiện có thể liên quan đến sự kiện đó.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!