Cách lấy dữ liệu từ Tradingview bằng thư viện Tvdatafeed

25/03/2024

19,229 lượt đọc

Tiếp nối 2 phần trước về cách lấy dữ liệu lịch sử từ thị trường chứng khoán Việt Nam bằng VNQuant Vnstock. Bài viết này, QM Capital sẽ giới thiệu một phương pháp khác có thể lấy được dữ liệu của các sàn giao dịch trên thế giới từ Tradingview bằng thư viện Tvdatafeed. Cả 3 phương pháp này đều được sử dụng chung trên nền tảng Python qua những dòng code nên việc lấy hết sức dễ dàng và đơn giản, điều này cũng giúp nhà đầu tư tự động hóa quy trình và nhanh chóng. Tvdatafeed là một thư viện Python được thiết kế để giúp người dùng tải xuống dữ liệu lịch sử từ nền tảng TradingView. Với Tvdatafeed, người dùng có thể dễ dàng truy cập và sử dụng dữ liệu lịch sử của các tài sản tài chính như cổ phiếu, tiền điện tử, hoặc chỉ số từ TradingView để phục vụ cho mục đích phân tích kỹ thuật và giao dịch. 

Một số đặc điểm chính

  1. Có thể áp dụng phương pháp này cho tất cả các dữ liệu của chứng khoán thế giới, crypto, commodity index... bằng việc thay Symbol và exchange
  2. Tradingview cung cấp dữ liệu theo nhiều interval khác nhau (phút, giờ, ngày, tuần). Do đó, có thể áp dụng chiến lược giao dịch ở nhiều khung giờ khác nhau.

Hình 1.1. Dữ liệu lịch sử của chỉ số VNINDEX được lấy theo giờ


  1. Có thể tải xuống dữ liệu từ nhiều sàn giao dịch khác nhau, bao gồm NASDAQ, NYSE, LSE, NSE, HOSE…

Hình 1.2. Dữ liệu lịch sử của CL1! được lấy từ sàn NYMEX

Hình 1.3. Dữ liệu lịch sử của BTCUSD được lấy từ sàn COINBASE

Hạn chế của phương pháp này

  1. Đối với chứng khoán Việt nam: Dữ liệu VNINDEX không có volume! Do Tradingview không cung cấp (kể cả tài khoản premium và mua thêm dữ liệu)
  2. Chỉ lấy được tối đa 20.000 quan sát tùy thuộc gói Tài khoản của bạn, Gói trả phí có thể nâng lên 25k-30k

Dưới đây là Link Google Colab hướng dẫn chi tiết: 

Phương pháp 3: Cách lấy dữ liệu từ Tradingview bằng thư viện Tvdatafeed

Trên đây là một số đặc điểm chính và hạn chế của phương pháp lấy dữ liệu lịch sử giá từ Tradingview bằng thư viện Tvdatafeed mà QM Capital đã tổng hợp lại. Qua 3 phương pháp, mỗi phương pháp đều có những ưu và nhược điểm riêng, tùy thuộc vào mục đích sử dụng mà nhà đầu tư lựa chọn linh hoạt. Tóm lại, việc lấy dữ liệu sử dụng công cụ Python ngày càng được phổ biến và có nhiều nguồn thư viện mở giúp nhà đầu tư có thể dễ dàng tiếp cận chỉ với những lệnh code đơn giản, từ đó sẽ giúp nhà đầu tư tự động hóa và tăng hiệu suất. 


  



Chia sẻ bài viết

Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Khung thời gian trong giao dịch trong quant trading
16/10/2025
24 lượt đọc

Khung thời gian trong giao dịch trong quant trading C

Một trong những quyết định tưởng chừng đơn giản nhưng lại ảnh hưởng lớn nhất đến kết quả giao dịch — là việc chọn khung thời gian (time frame). Hầu hết các trader, đặc biệt là người mới, đều bắt đầu với câu hỏi: “Tôi nên giao dịch khung nào — 1 phút, 5 phút, hay khung ngày?” Thực tế, không có “khung thời gian tốt nhất”. Thị trường không quan tâm bạn vào lệnh ở 9h30 hay nắm giữ đến tháng sau. Cái thị trường phản hồi chỉ là xác suất và hành vi giá trong khung mà bạn chọn.

10 trader để đời: những góc nhìn chưa bao giờ cũ về thị trường
14/10/2025
54 lượt đọc

10 trader để đời: những góc nhìn chưa bao giờ cũ về thị trường C

Thị trường tài chính là nơi con người, tâm lý và dữ liệu va vào nhau. Mỗi chu kỳ lại tạo ra những người thắng lớn, và để lại bài học cho những người đến sau. Nếu nhìn lại hơn 100 năm lịch sử, có một nhóm nhỏ trader đã để lại dấu ấn đến mức dù bạn đang làm trading định lượng, discretionary hay macro thì triết lý của họ vẫn còn nguyên giá trị. Dưới đây là 10 trader mà bất kỳ ai nghiên cứu thị trường nghiêm túc cũng nên hiểu rõ. Không chỉ để ngưỡng mộ, mà để rút ra cách họ tư duy về rủi ro, xác suất, và tâm lý con người.

5 chiến lược thực tế để giảm thiểu rủi ro thị trường
13/10/2025
78 lượt đọc

5 chiến lược thực tế để giảm thiểu rủi ro thị trường C

Rủi ro thị trường (market risk) là rủi ro hệ thống ảnh hưởng đồng thời đến nhiều tài sản — không thể loại bỏ hoàn toàn nhưng có thể quản trị. Bài này trình bày phân tích chuyên sâu về bản chất các loại rủi ro thị trường, phương pháp đo lường chính, rồi đi vào 5 chiến lược giảm thiểu (risk tolerance, đa dạng hoá, hedging, giám sát liên tục, và tầm nhìn dài hạn). Cuối bài có phần cài đặt kỹ thuật và khuyến nghị quản trị.

Từ dữ liệu đến backtest: cách một chiến lược định lượng được hình thành
09/10/2025
72 lượt đọc

Từ dữ liệu đến backtest: cách một chiến lược định lượng được hình thành C

Nhiều người nghĩ rằng xây dựng một chiến lược định lượng chỉ đơn giản là kết hợp vài chỉ báo kỹ thuật, chạy backtest và chọn ra mô hình có đường equity “đẹp”. Nhưng thực tế thì khác xa — một chiến lược có thể tồn tại ngoài thị trường thật cần một quy trình rõ ràng, có kiểm định và giới hạn rủi ro ở từng bước.

Vì sao nhà đầu tư cá nhân nên chuyển mình sang tư duy định lượng?
08/10/2025
90 lượt đọc

Vì sao nhà đầu tư cá nhân nên chuyển mình sang tư duy định lượng? C

Hiện nay dữ liệu giống như “dầu mỏ” của thế kỷ 21, càng có nhiều, càng mạnh. Nhờ vào công nghệ và các thuật toán hiện đại, đầu tư tài chính đang chuyển mình mạnh mẽ: không còn chỉ dựa vào linh cảm hay tin đồn, mà thay vào đó là các mô hình toán học, xác suất, và chiến lược định lượng.

Tại sao "Thông tin" mới là Alpha thật sự của thị trường?
07/10/2025
141 lượt đọc

Tại sao "Thông tin" mới là Alpha thật sự của thị trường? C

Trong hơn hai thập kỷ qua, thế giới tài chính chứng kiến sự dịch chuyển mạnh từ discretionary trading (giao dịch dựa trên cảm tính và kinh nghiệm) sang systematic trading – nơi mọi quyết định được mô hình hóa, kiểm định và lượng hóa. Nhưng giữa hàng nghìn chiến lược phức tạp được sinh ra, rất ít mô hình thực sự khai thác được dòng chảy thông tin – yếu tố mà thị trường vận hành xung quanh nó.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!