25/03/2024
17,756 lượt đọc
Tiếp nối 2 phần trước về cách lấy dữ liệu lịch sử từ thị trường chứng khoán Việt Nam bằng VNQuant và Vnstock. Bài viết này, QM Capital sẽ giới thiệu một phương pháp khác có thể lấy được dữ liệu của các sàn giao dịch trên thế giới từ Tradingview bằng thư viện Tvdatafeed. Cả 3 phương pháp này đều được sử dụng chung trên nền tảng Python qua những dòng code nên việc lấy hết sức dễ dàng và đơn giản, điều này cũng giúp nhà đầu tư tự động hóa quy trình và nhanh chóng. Tvdatafeed là một thư viện Python được thiết kế để giúp người dùng tải xuống dữ liệu lịch sử từ nền tảng TradingView. Với Tvdatafeed, người dùng có thể dễ dàng truy cập và sử dụng dữ liệu lịch sử của các tài sản tài chính như cổ phiếu, tiền điện tử, hoặc chỉ số từ TradingView để phục vụ cho mục đích phân tích kỹ thuật và giao dịch.
Hình 1.1. Dữ liệu lịch sử của chỉ số VNINDEX được lấy theo giờ
Hình 1.2. Dữ liệu lịch sử của CL1! được lấy từ sàn NYMEX
Hình 1.3. Dữ liệu lịch sử của BTCUSD được lấy từ sàn COINBASE
Dưới đây là Link Google Colab hướng dẫn chi tiết:
Phương pháp 3: Cách lấy dữ liệu từ Tradingview bằng thư viện Tvdatafeed
Trên đây là một số đặc điểm chính và hạn chế của phương pháp lấy dữ liệu lịch sử giá từ Tradingview bằng thư viện Tvdatafeed mà QM Capital đã tổng hợp lại. Qua 3 phương pháp, mỗi phương pháp đều có những ưu và nhược điểm riêng, tùy thuộc vào mục đích sử dụng mà nhà đầu tư lựa chọn linh hoạt. Tóm lại, việc lấy dữ liệu sử dụng công cụ Python ngày càng được phổ biến và có nhiều nguồn thư viện mở giúp nhà đầu tư có thể dễ dàng tiếp cận chỉ với những lệnh code đơn giản, từ đó sẽ giúp nhà đầu tư tự động hóa và tăng hiệu suất.
0 / 5
Trong đầu tư chứng khoán, “động lượng” (momentum) là một trong những chiến lược kinh điển – tận dụng xu hướng đã hình thành để xác định cơ hội sinh lời. Các nghiên cứu cho thấy, chỉ số momentum của MSCI đã vượt trội so với chỉ số vốn hóa thị trường khoảng 1.4% mỗi năm trong thập kỷ qua. Dưới đây là 5 chỉ báo động lượng phổ biến, cùng ưu – nhược điểm và gợi ý ứng dụng thực tiễn dành cho nhà đầu tư cá nhân.
Trong giao dịch định lượng, backtest chỉ là bước khởi đầu. Một chuỗi kết quả ấn tượng trên dữ liệu lịch sử không đảm bảo chiến lược của bạn sẽ “sống sót” khi gặp dữ liệu thực. Để tự tin triển khai live trading, cần thiết lập một quy trình robust backtesting tức kiểm chứng chiến lược qua nhiều lớp ngăn ngừa sai lệch, đảm bảo tính ổn định, loại bỏ nguy cơ vỡ trận khi thị trường bất ngờ đổi chiều.
Trong đầu tư, không ít chiến lược hiện đại dựa vào thuật toán, trí tuệ nhân tạo hay dữ liệu vĩ mô phức tạp. Thế nhưng, 4 cách tiếp cận kinh điển sau đây vẫn được hàng loạt huyền thoại tài chính tin dùng bởi tính đơn giản, nguyên bản và đã minh chứng qua thời gian. Dù bạn là nhà đầu tư dài hạn hay trader lướt sóng, việc hiểu rõ ưu – nhược điểm của từng phong cách sẽ giúp xây dựng danh mục tối ưu, phù hợp với mục tiêu và khả năng chịu đựng rủi ro của bản thân.
Strategy Decay thể hiện qua sự giảm dần tính hiệu quả của chiến lược giao dịch định lượng sau một thời gian vận hành. Ngay từ ngày đầu triển khai, một chiến lược có thể ghi nhận mức lợi suất ổn định 15 % mỗi năm và tỷ lệ thắng lệnh 52 %, nhưng sau năm đầu live trading, con số này nhanh chóng trượt về 8 % lợi nhuận và 45 % tỷ lệ thắng, trong khi mức sụt giảm tối đa trở nên sâu hơn, từ 18 % backtest lên 25 % thực tế.
Trung bình động (moving average) là giá trị trung bình của một chuỗi số liệu trong một khoảng thời gian cố định, gọi là lookback period.
Tái cân bằng (rebalancing) là quá trình đưa tỷ trọng các tài sản trong danh mục trở về mức mục tiêu đã thiết kế, sau khi biến động giá khiến chúng lệch đi. Ví dụ, một danh mục 60 % cổ phiếu – 40 % trái phiếu có thể “trôi” thành 75 % – 25 % nếu thị trường cổ phiếu tăng mạnh; việc bán bớt cổ phiếu, mua thêm trái phiếu giúp danh mục quay lại 60/40.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!