29/08/2025
279 lượt đọc
Market Return được định nghĩa là tỷ suất lợi nhuận của market portfolio – danh mục thị trường lý tưởng bao gồm tất cả các tài sản có thể đầu tư trong nền kinh tế, từ cổ phiếu, trái phiếu, bất động sản cho tới hàng hóa và các công cụ phái sinh, với tỷ trọng phân bổ theo đúng giá trị vốn hóa thị trường.
Khái niệm này bắt nguồn từ Modern Portfolio Theory (MPT) của Harry Markowitz (1952), nền tảng của tài chính hiện đại. Lý thuyết này cho rằng thay vì đánh giá từng tài sản riêng lẻ, nhà đầu tư nên xem xét cách các tài sản kết hợp với nhau thành một danh mục, trong đó “thị trường” chính là danh mục tối đa hóa lợi nhuận kỳ vọng với một mức rủi ro chấp nhận được. Market portfolio trở thành “điểm gốc” trong đường biên hiệu quả (efficient frontier).
Dù khái niệm gốc mang tính lý thuyết, không ai có thể nắm giữ toàn bộ tài sản của nền kinh tế. Do đó, market return thường được xấp xỉ bằng lợi nhuận của các chỉ số (benchmark):
Việc lựa chọn benchmark phải phù hợp với phạm vi hoạt động của danh mục. Ví dụ: một quỹ cổ phiếu Việt Nam so với S&P 500 là không hợp lý, mà nên so với VN-Index hoặc VN30.
Market return là biến số trung tâm của Capital Asset Pricing Model (CAPM) – mô hình định giá tài sản được William Sharpe, John Lintner và Jan Mossin phát triển vào thập niên 1960. Công thức:
E(Ri)=Rf+βi(E(Rm)−Rf)
Trong đó:
Công thức này cho thấy: lợi nhuận kỳ vọng của một tài sản phụ thuộc vào rủi ro hệ thống mà nó gánh chịu so với thị trường. Phần chênh lệch E(Rm) − Rf gọi là market risk premium – phần bù rủi ro mà nhà đầu tư đòi hỏi khi bỏ vốn vào tài sản rủi ro thay vì tài sản an toàn.
Hệ quả:
Trong đầu tư, bản thân con số lợi nhuận tuyệt đối chưa bao giờ đủ để phản ánh hiệu quả. Một danh mục tăng 15% nghe qua có vẻ ấn tượng, nhưng thực chất ý nghĩa thế nào còn tùy vào việc thị trường trong cùng kỳ tăng bao nhiêu. Nếu thị trường tăng 12%, danh mục đó được xem là outperform với alpha dương +3%. Nhưng nếu thị trường tăng tới 20%, thì danh mục lại rơi vào tình trạng underperform với alpha âm -5%.
Chính vì thế, trong mọi báo cáo quản lý quỹ, hiệu suất danh mục luôn được đặt cạnh một benchmark phù hợp – thường là chỉ số thị trường phản ánh đúng phạm vi và phong cách đầu tư của quỹ. Ví dụ:
Benchmarking giúp nhà đầu tư không chỉ biết mình lời/lỗ bao nhiêu, mà còn biết được liệu mình có tạo ra giá trị vượt trội so với mặt bằng chung hay chỉ đơn thuần “trôi theo sóng”.
Market return cũng là ranh giới phân định giữa hai trường phái đầu tư:
Nói cách khác, market return vừa là mục tiêu, vừa là chuẩn mực đối đầu, tùy vào triết lý đầu tư.
Market return còn là biến số quan trọng trong nhiều chỉ số đo lường hiệu quả và rủi ro:
Trong tất cả các chỉ số này, market return luôn hiện diện như một mốc chuẩn. Nó cho phép nhà đầu tư biết liệu hiệu suất danh mục có đến từ kỹ năng thực sự hay chỉ từ việc thị trường đang thuận lợi.
Điều đáng chú ý là, từ góc độ học thuật, market return xuất hiện trong hầu hết các mô hình định giá: CAPM, APT, Fama-French Multifactor Models. Trong khi đó, từ góc độ thực tiễn, nó lại là benchmark sống động phản ánh tâm lý đám đông và sức khỏe thị trường tài chính.
Chính vì vậy, market return vừa mang tính lý thuyết (như một biến trong mô hình toán học), vừa mang tính ứng dụng trực tiếp (như một chỉ số để so sánh hiệu quả đầu tư hàng ngày). Đây là sự giao thoa hiếm có giữa học thuật và thực tiễn trong tài chính.
Thách thức
a. Lựa chọn benchmark phù hợp
Market return chỉ có ý nghĩa khi benchmark được chọn đúng. Một quỹ đầu tư công nghệ nếu so với Dow Jones (thiên về cổ phiếu công nghiệp truyền thống) sẽ dễ cho kết quả sai lệch. Thách thức lớn ở đây là mismatch giữa đặc điểm danh mục và chỉ số tham chiếu. Trong nghiên cứu thực nghiệm, việc chọn benchmark sai có thể làm “méo” kết quả đo alpha hay Sharpe Ratio.
b. Thị trường giảm giá (bear market)
Trong các giai đoạn thị trường đi xuống, market return có thể âm. Khi đó, outperform không đồng nghĩa với thành công. Ví dụ, một quỹ lỗ -8% trong khi VN-Index lỗ -12% vẫn được coi là outperform, nhưng kết quả thực tế vẫn là mất vốn. Điều này nhấn mạnh rằng outperform chỉ mang tính tương đối, không thay thế được mục tiêu lợi nhuận tuyệt đối.
c. Bối cảnh toàn cầu hóa
Trong thời đại hội nhập, một danh mục nội địa cũng chịu ảnh hưởng mạnh từ thị trường quốc tế. Ví dụ, lợi nhuận của cổ phiếu Việt Nam thường có tương quan cao với MSCI Emerging Markets. Điều này đặt ra câu hỏi: nhà đầu tư nên lấy benchmark nội địa (VN-Index) hay toàn cầu (MSCI EM)? Thực tế, nhiều quỹ đa tài sản phải kết hợp nhiều benchmark cùng lúc để phản ánh đúng rủi ro hệ thống.
Giới hạn
Market return là chuẩn mực khách quan, nhưng nó không phải thước đo duy nhất. Với một nhà đầu tư cá nhân, điều quan trọng có thể không phải outperform thị trường, mà là đạt được mục tiêu tài chính riêng: an toàn vốn, dòng tiền ổn định, hoặc bảo toàn sức mua trước lạm phát.
Market Return là nền móng của Quant Trading.
Nhận diện đúng market return, chọn benchmark phù hợp và hiểu giới hạn của nó sẽ giúp nhà đầu tư không chỉ đánh giá chính xác hiệu quả danh mục, mà còn đặt ra kỳ vọng hợp lý và lựa chọn phong cách đầu tư đúng đắn cho mình.
0 / 5
Python không chỉ là một ngôn ngữ lập trình phổ biến — trong lĩnh vực tài chính định lượng và giao dịch tự động (quant trading), nó đã trở thành công cụ chủ lực. Nhờ hàng loạt thư viện mạnh mẽ, lập trình viên và nhà đầu tư giờ có thể biến ý tưởng chiến lược thành mô hình thực thi — từ phân tích dữ liệu, backtesting tới triển khai live trading.
Một trong những quyết định tưởng chừng đơn giản nhưng lại ảnh hưởng lớn nhất đến kết quả giao dịch — là việc chọn khung thời gian (time frame). Hầu hết các trader, đặc biệt là người mới, đều bắt đầu với câu hỏi: “Tôi nên giao dịch khung nào — 1 phút, 5 phút, hay khung ngày?” Thực tế, không có “khung thời gian tốt nhất”. Thị trường không quan tâm bạn vào lệnh ở 9h30 hay nắm giữ đến tháng sau. Cái thị trường phản hồi chỉ là xác suất và hành vi giá trong khung mà bạn chọn.
Thị trường tài chính là nơi con người, tâm lý và dữ liệu va vào nhau. Mỗi chu kỳ lại tạo ra những người thắng lớn, và để lại bài học cho những người đến sau. Nếu nhìn lại hơn 100 năm lịch sử, có một nhóm nhỏ trader đã để lại dấu ấn đến mức dù bạn đang làm trading định lượng, discretionary hay macro thì triết lý của họ vẫn còn nguyên giá trị. Dưới đây là 10 trader mà bất kỳ ai nghiên cứu thị trường nghiêm túc cũng nên hiểu rõ. Không chỉ để ngưỡng mộ, mà để rút ra cách họ tư duy về rủi ro, xác suất, và tâm lý con người.
Rủi ro thị trường (market risk) là rủi ro hệ thống ảnh hưởng đồng thời đến nhiều tài sản — không thể loại bỏ hoàn toàn nhưng có thể quản trị. Bài này trình bày phân tích chuyên sâu về bản chất các loại rủi ro thị trường, phương pháp đo lường chính, rồi đi vào 5 chiến lược giảm thiểu (risk tolerance, đa dạng hoá, hedging, giám sát liên tục, và tầm nhìn dài hạn). Cuối bài có phần cài đặt kỹ thuật và khuyến nghị quản trị.
Nhiều người nghĩ rằng xây dựng một chiến lược định lượng chỉ đơn giản là kết hợp vài chỉ báo kỹ thuật, chạy backtest và chọn ra mô hình có đường equity “đẹp”. Nhưng thực tế thì khác xa — một chiến lược có thể tồn tại ngoài thị trường thật cần một quy trình rõ ràng, có kiểm định và giới hạn rủi ro ở từng bước.
Hiện nay dữ liệu giống như “dầu mỏ” của thế kỷ 21, càng có nhiều, càng mạnh. Nhờ vào công nghệ và các thuật toán hiện đại, đầu tư tài chính đang chuyển mình mạnh mẽ: không còn chỉ dựa vào linh cảm hay tin đồn, mà thay vào đó là các mô hình toán học, xác suất, và chiến lược định lượng.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!