11/09/2025
462 lượt đọc
Trong ngôn ngữ định lượng, alpha là phần lợi nhuận vượt chuẩn (benchmark-adjusted return), tức lợi nhuận mà nhà đầu tư tạo ra ngoài những gì có thể lý giải bằng yếu tố thị trường chung (beta). Alpha thường đến từ những tín hiệu thống kê – ví dụ momentum, mean reversion, anomalies kiểu January effect, hay mô hình machine learning phát hiện pattern ẩn.
Vấn đề nằm ở chỗ: ngay cả khi bạn phát hiện một alpha mạnh mẽ trong dữ liệu lịch sử, khả năng cao alpha đó sẽ suy giảm nhanh chóng khi đưa vào thực tế. Hiện tượng này gọi là alpha decay.
Một tín hiệu chỉ thực sự có giá trị nếu nó khai thác được sự bất hợp lý hoặc phần bù rủi ro còn sót lại trên thị trường. Nhưng một khi tín hiệu được nhiều người biết đến và sử dụng, thì chính hành động của các nhà đầu tư sẽ làm “ăn mòn” lợi nhuận của nó.
Điều này phản ánh quy luật cơ bản: không có bữa trưa miễn phí lâu dài. Alpha “lộ diện” chính là alpha bắt đầu suy yếu.
Không ít tín hiệu “chết yểu” không phải vì bị khai thác nhiều, mà vì ngay từ đầu đã không tồn tại trong thực tế. Đây là hệ quả của overfitting (mô hình quá khớp dữ liệu quá khứ) và data-snooping bias (thử nghiệm quá nhiều đến khi tìm ra một cái “đẹp”).
Trong thực hành, đây là lý do tại sao backtest đẹp không có nghĩa là mô hình sống được. Một chiến lược có Sharpe ratio cao bất thường đôi khi chỉ là sản phẩm của “curve fitting”.
Một nghịch lý: nhiều alpha không biến mất ngay, không phải vì chúng bền, mà vì có giới hạn trong việc arbitrage.
Nhưng chính những “limit” này cũng làm alpha mong manh: khi rủi ro thực thi tăng hoặc khi hạn chế pháp lý thay đổi, tín hiệu có thể sụp đổ đột ngột. Một alpha không được phòng hộ hoặc đảo chiều kịp thời thì tuổi thọ rất ngắn.
Nếu ở các thị trường phát triển, alpha decay thường đến từ crowding (quá nhiều vốn khai thác cùng một anomaly), thì tại Việt Nam, sự “chết yểu” của tín hiệu còn bị gia tốc bởi các yếu tố cấu trúc và thực thi.
Thanh khoản trên HOSE tập trung mạnh ở nhóm VN30, trong khi hàng trăm cổ phiếu mid-cap, small-cap có spread rộng và khối lượng giao dịch mỏng. Điều này dẫn đến:
Kết quả: Những alpha tưởng như tồn tại trên dữ liệu lịch sử thực chất bị “ăn mòn” ngay khi tiếp xúc với thị trường thật.
So với các thị trường phát triển, phí giao dịch và thuế ở Việt Nam vẫn còn cao (ví dụ phí sàn, phí CTCK, thuế TNCN 0,1% giá trị bán). Đối với chiến lược turnover cao:
Ở đây, alpha decay diễn ra rất nhanh — không phải vì tín hiệu sai, mà vì chi phí thị trường “ăn” lợi nhuận trước khi kịp nhận ra.
Một đặc thù quan trọng của thị trường Việt Nam: shorting trực tiếp cổ phiếu gần như không có. Nhà đầu tư chỉ có thể:
Điều này dẫn đến hệ quả:
Một điểm ít được chú ý: các mô hình nhân tố toàn cầu (CAPM, Fama–French 3 factors) không giải thích hết rủi ro ở Việt Nam.
Khi nhà đầu tư không kiểm soát yếu tố bản địa, họ sẽ dễ lầm tưởng mình có alpha → nhưng thực tế chỉ đang ôm beta rủi ro chưa đo đúng.
0 / 5
Nếu nhìn vào các con số thống kê, việc nhiều người tìm đến bot trading là điều hoàn toàn dễ hiểu. Phần lớn trader cá nhân không beat được thị trường trong dài hạn. Day trading thì tỷ lệ tồn tại còn thấp hơn nữa. Khi đã thử đủ cách mà kết quả vẫn không cải thiện, ý tưởng “để máy làm thay mình” trở nên rất hấp dẫn.
Momentum trading thường bị hiểu sai ngay từ tên gọi. Nhiều người nghĩ momentum đơn giản là “giá tăng thì mua, giá giảm thì bán”, hay một dạng technical analysis nông. Cách hiểu này bỏ qua phần quan trọng nhất: momentum là một giả thuyết về cách thị trường phản ứng với thông tin theo thời gian, chứ không phải một công thức giao dịch cụ thể.
Khi nói đến “predict the upcoming trends”, đa số mọi người hình dung ngay đến việc gọi tên một xu hướng sắp tới: công nghệ nào sẽ bùng nổ, thị trường nào sẽ tăng trưởng, hành vi nào sẽ trở nên phổ biến. Nhưng cách hiểu này ngay từ đầu đã đặt kỳ vọng sai. Trong thực tế, không ai thực sự “nhìn thấy” tương lai, kể cả những tổ chức có dữ liệu lớn và đội ngũ phân tích mạnh. Thứ họ làm tốt hơn số đông không phải là dự đoán chính xác, mà là hiểu rõ cấu trúc của hiện tại và các lực đang tác động lên nó.
Mình từng nghĩ câu hỏi này khá đơn giản. Nhưng càng làm lâu, mình càng thấy câu trả lời thay đổi theo từng giai đoạn, thậm chí theo từng drawdown. Có lúc mình tin chắc là tìm được alpha là khó nhất, có lúc lại thấy rủi ro và execution mới là thứ giết chết mọi thứ, và cũng có giai đoạn mình nhận ra vấn đề lớn nhất lại nằm ở chính cách mình chấp nhận (hay không chấp nhận) sự không chắc chắn của market.
Mình vừa “tìm hiểu kỹ” (đúng hơn là soi mục lục + mô tả chính thức của NXB và bản xem trước) cuốn “Advanced Portfolio Management – A Quant’s Guide for Fundamental Investors” của Giuseppe A. Paleologo. Cảm giác đầu tiên là: đây là kiểu sách rất dễ khiến người đọc bị trúng ngay chỗ đau vì nó không hô khẩu hiệu “tối ưu danh mục” theo kiểu giáo khoa, mà đặt thẳng vấn đề: bạn có ý tưởng đầu tư (edge) rồi đó, nhưng biến nó thành PnL bền vững mới là game thật. Sách được đóng khung rõ ràng cho fundamental PM/analyst muốn dùng “quant” như một bộ khung kỷ luật (risk + sizing + hedging + trading), chứ không phải biến mình thành một nhà toán học ngồi solve tối ưu cho đẹp.
Quỹ đầu tư định lượng (quant funds) đã trở thành một phần không thể thiếu trong các thị trường tài chính hiện đại. Với sự phát triển mạnh mẽ của công nghệ và dữ liệu, các quỹ này sử dụng những mô hình toán học và thuật toán để xây dựng chiến lược giao dịch. Tuy nhiên, một trong những điểm đặc biệt của các quỹ định lượng là việc họ áp dụng rất nhiều chiến lược giao dịch khác nhau, từ theo xu hướng (trend-following) cho đến chiến lược phản xu hướng (countertrend). Mỗi loại quỹ lại có một cách tiếp cận riêng và được xây dựng trên những nguyên lý khác nhau, và chúng hoạt động tốt nhất trong những điều kiện thị trường nhất định.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!