20/03/2024
17,350 lượt đọc
Cách lấy dữ liệu bằng thư viện VNQuant
VNQuant là một thư viện được tạo ra bởi tác giả Phạm Đình Khánh, giúp mọi người truy cập và phân tích dữ liệu thị trường tài chính của Việt Nam. Thư viện này cung cấp các công cụ và chức năng để tải xuống dữ liệu về báo cáo tài chính và các chỉ số cơ bản của doanh nghiệp, đồng thời hỗ trợ phân tích kỹ thuật bằng cách cung cấp các biểu đồ nến, chỉ báo kỹ thuật và nhiều tính năng khác.

VNQuant cho phép người dùng tải xuống dữ liệu liên quan đến báo cáo tài chính của các doanh nghiệp.
Hình 1.1. Dữ liệu lịch sử giá của mã MBB
Hình 1.2. Dữ liệu các chỉ số tài chính cơ bản
Hình 1.3. Biểu đồ nến và khối lượng của MBB trong giai đoạn 2011 - 2022
Dưới đây là Link Google Colab hướng dẫn chi tiết:
Phương pháp 1: Download bằng thư viện VNQuant
Trên đây là một số ưu, nhược điểm của thư viện VNQuant mà QM Capital đã tổng hợp, hẹn mọi người trong bài viết sau về thư viện Vnstock.
0 / 5
Với nhà đầu tư Việt Nam, PAMM và Copy Trading thường được quảng bá chung một nhóm: “đầu tư thụ động”, “không cần biết phân tích”, “chỉ cần chọn người giỏi”. Nhưng nếu nhìn kỹ, hai mô hình này khác nhau ngay ở điểm nền tảng nhất: PAMM là bạn ủy quyền cho người khác giao dịch trên một tài khoản chung, còn Copy Trading là bạn vẫn giữ tài khoản của mình và chỉ sao chép lệnh. Nghe thì giống nhau, nhưng trong thực tế nó tạo ra hai cảm giác hoàn toàn khác: PAMM giống như “gửi tiền cho người khác lái xe hộ”, còn Copy Trading giống “ngồi xe của mình nhưng bật chế độ chạy theo xe dẫn đường”. Một khi bạn hiểu sự khác nhau về quyền kiểm soát, bạn sẽ thấy phần lớn câu chuyện “an toàn hơn” hay “nguy hiểm hơn” đều xoay quanh đúng điểm này.
Ở Việt Nam, khái niệm “penny stock” thường không được định nghĩa theo kiểu một mốc giá cứng như trong vài thị trường khác, nhưng trong thực tế nhà đầu tư vẫn hiểu khá giống nhau: đó là nhóm cổ phiếu giá thấp, thường thuộc doanh nghiệp vốn hóa nhỏ, thanh khoản có thể “lúc có lúc không”, và biến động giá thường mạnh hơn phần còn lại của thị trường. Có những mã giá thấp vì doanh nghiệp thật sự yếu, kết quả kinh doanh xấu kéo dài, bị suy giảm niềm tin nên giá bị “đè” xuống. Nhưng cũng có những mã giá thấp vì giai đoạn thị trường xấu làm định giá co lại, hoặc doanh nghiệp nhỏ nhưng đang trong quá trình tái cấu trúc, có câu chuyện hồi phục. Chính sự lẫn lộn giữa hai nhóm này tạo ra cảm giác “đi tìm vàng trong cát”, khiến penny trở thành thứ cực kỳ hấp dẫn với nhà đầu tư thích cảm giác “mua rẻ”.
Nếu nhìn lại 3–5 năm gần đây, algorithmic trading đã thay đổi rất nhiều. Trước đây, chỉ cần một chiến lược có equity curve đẹp trên backtest là đủ để nhiều người tin rằng mình đã tìm ra “công thức in tiền”. Nhưng bước sang 2026, môi trường thị trường buộc người làm algo phải trưởng thành hơn. Biến động cao hơn, dòng tiền luân chuyển nhanh hơn, và sự cạnh tranh cũng dày đặc hơn. Điều này khiến lợi thế không còn nằm ở việc bạn có một mô hình phức tạp hay không, mà nằm ở việc hệ thống của bạn có thực sự sống sót được trong điều kiện xấu hay không.
Tâm lý tài chính (Behavioral Finance) là một lĩnh vực nghiên cứu tâm lý học và kinh tế học, giúp giải thích tại sao những nhà đầu tư, dù có kỹ năng hay kiến thức, vẫn thường xuyên đưa ra các quyết định tài chính không hợp lý. Đặc biệt, tâm lý tài chính không đồng ý với giả thuyết của lý thuyết tài chính truyền thống, cho rằng mọi quyết định trong thị trường đều được đưa ra một cách hợp lý và tối ưu. Trái lại, tâm lý tài chính nhìn nhận rằng con người thường xuyên bị chi phối bởi cảm xúc, và điều này có thể dẫn đến những sai lầm trong giao dịch.
Market flow trading, hiểu đơn giản, không phải là cố đoán xem giá sẽ lên hay xuống, mà là quan sát dòng tiền và hành vi giao dịch đang thực sự diễn ra. Thay vì hỏi “cổ phiếu này rẻ hay đắt”, market flow đặt câu hỏi: ai đang mua, ai đang bán, và họ có đang quyết liệt hay không.
Trong quantitative finance, câu hỏi Python hay C++ xuất hiện rất sớm, thường ngay khi người ta bắt đầu viết những dòng code đầu tiên cho trading. Điều thú vị là câu hỏi này không bao giờ có câu trả lời dứt khoát, và chính việc nó tồn tại suốt nhiều năm cho thấy một điều: hai ngôn ngữ này không thay thế nhau, mà phục vụ những mục đích rất khác nhau. Nếu chỉ nhìn ở mức bề mặt, người ta thường nói Python dễ nhưng chậm, C++ khó nhưng nhanh. Nhưng trong công việc quant thực tế, sự khác biệt quan trọng hơn nhiều nằm ở bạn đang giải quyết loại vấn đề gì, và ở giai đoạn nào của pipeline.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!