19/11/2025
525 lượt đọc
Mô hình Markowitz, hay còn gọi là Mô hình Trung Bình - Phương Sai (Mean-Variance Model), là nền tảng của lý thuyết danh mục đầu tư hiện đại và đã được phát triển bởi Harry Markowitz vào năm 1952. Mô hình này được xem là một trong những công cụ mạnh mẽ giúp các nhà đầu tư xây dựng danh mục đầu tư tối ưu, kết hợp giữa các tài sản khác nhau sao cho tối đa hóa lợi nhuận kỳ vọng trong khi giảm thiểu rủi ro. Cốt lõi của mô hình là phân tích sự kết hợp giữa các tài sản dựa trên lợi nhuận kỳ vọng và độ biến động (rủi ro) của chúng. Tuy nhiên, áp dụng mô hình này trong thực tế có thể gặp một số thách thức, đặc biệt là với các giả định lý thuyết về thị trường và hành vi của nhà đầu tư. Trong bài viết này, chúng ta sẽ phân tích chi tiết về lý thuyết của mô hình Markowitz, cách tính toán đường biên giới hiệu quả, những giả định cần lưu ý và ứng dụng thực tiễn của mô hình này trong quản lý danh mục đầu tư.
Mô hình Markowitz được phát triển với mục tiêu tối ưu hóa một danh mục đầu tư thông qua sự kết hợp của các tài sản khác nhau sao cho đạt được tỷ lệ lợi nhuận/rủi ro tốt nhất. Cụ thể, mục tiêu chính của mô hình là giúp nhà đầu tư lựa chọn một danh mục đầu tư sao cho có thể tối đa hóa lợi nhuận kỳ vọng, trong khi vẫn kiểm soát được mức độ rủi ro (biến động giá trị tài sản).
Mô hình Markowitz sử dụng hai yếu tố chính để đánh giá hiệu quả của một danh mục đầu tư: lợi nhuận kỳ vọng và độ biến động (phương sai) của các tài sản trong danh mục.
Mô hình cho phép tính toán và lựa chọn một danh mục đầu tư sao cho tỷ lệ lợi nhuận kỳ vọng trên mỗi đơn vị rủi ro (tỷ lệ Sharpe) là cao nhất.
Mô hình Markowitz hoạt động dựa trên một số giả định quan trọng:
Một trong những khái niệm quan trọng nhất trong mô hình Markowitz là Đường Biên Giới Hiệu Quả (Efficient Frontier). Đây là đường cong thể hiện các danh mục đầu tư có tỷ lệ lợi nhuận/rủi ro tối ưu. Nói một cách đơn giản, đường biên giới hiệu quả sẽ cho thấy những danh mục có khả năng sinh lời cao nhất trong mỗi mức độ rủi ro cụ thể hoặc có mức độ rủi ro thấp nhất cho một lợi nhuận kỳ vọng.
Trên đường biên giới hiệu quả, các danh mục đầu tư được phân loại như sau:
Trong thực tế, khi áp dụng mô hình Markowitz, nhà đầu tư thường sẽ phải đối mặt với các ràng buộc về trọng số tài sản trong danh mục. Ví dụ, nhà đầu tư có thể chỉ cho phép trọng số của mỗi tài sản không âm (long-only constraint), hoặc giới hạn trọng số tối đa của mỗi tài sản trong danh mục. Những ràng buộc này sẽ làm cho đường biên giới hiệu quả thay đổi và trở nên mượt mà hơn hoặc gập ghềnh hơn tùy thuộc vào mức độ ràng buộc. Chúng cũng có thể tạo ra sự dịch chuyển về mức độ rủi ro và lợi nhuận kỳ vọng của danh mục.
Tính toán đường biên giới hiệu quả có thể được thực hiện bằng các phương pháp tối ưu hóa. Một trong những phương pháp đơn giản và hiệu quả nhất là Critical Line Algorithm (CLA). CLA không yêu cầu số lượng quan sát (T) vượt quá số tài sản (N), giúp nó hoạt động tốt ngay cả khi số lượng tài sản trong danh mục lớn.
Thuật toán CLA bắt đầu từ điểm tối ưu nhất trên đường biên giới (thường là danh mục có lợi nhuận cao nhất), rồi dần dần mở rộng bằng cách thêm hoặc loại bỏ các tài sản khác vào danh mục sao cho tổng trọng số của các tài sản luôn bằng 1. Sau đó, các điểm hợp lý trên đường biên giới sẽ được tính toán qua việc thay đổi tỷ lệ giữa các tài sản.
Các điểm này tạo thành các đường chéo (critical lines) và kết hợp lại để xây dựng đường biên giới hiệu quả. Phương pháp này đặc biệt hữu ích khi số lượng tài sản trong danh mục rất lớn và không thể áp dụng phương pháp tối ưu hóa hình học trực tiếp.
Mô hình Markowitz không chỉ là một công cụ lý thuyết mà còn có thể được áp dụng trực tiếp trong quản lý danh mục đầu tư thực tế. Ví dụ, khi áp dụng mô hình này với các quỹ ETF như SPY (Cổ phiếu Mỹ), EFA (Cổ phiếu quốc tế), GLD (Vàng) và IEF (Trái phiếu chính phủ Mỹ), nhà đầu tư có thể tính toán tỷ lệ phân bổ tài sản tối ưu cho danh mục đầu tư của mình.
Thông qua việc tính toán đường biên giới hiệu quả, nhà đầu tư có thể xác định được danh mục đầu tư tối ưu trong mọi điều kiện thị trường. Trong thực tế, khi áp dụng mô hình Markowitz vào các ETF, chúng ta có thể thấy sự thay đổi của đường biên giới hiệu quả theo thời gian, phụ thuộc vào các yếu tố như tình hình kinh tế và biến động thị trường.
Ứng dụng mô hình này vào việc phân tích danh mục đầu tư giúp nhà đầu tư không chỉ tối ưu hóa tỷ lệ lợi nhuận/rủi ro mà còn hiểu rõ hơn về mối quan hệ tương quan giữa các tài sản. Ví dụ, việc kết hợp các tài sản như cổ phiếu và trái phiếu giúp giảm thiểu rủi ro chung của danh mục, vì cổ phiếu và trái phiếu thường có mối quan hệ tương quan âm hoặc thấp.
0 / 5
Nếu bạn đang có kế hoạch bước vào lĩnh vực Tài chính Định lượng (Quant Finance) trong năm 2026 – dù mục tiêu là thi MFE, làm quant research, xây dựng hệ thống giao dịch thuật toán hay phát triển mô hình rủi ro – thì việc xây dựng nền tảng đúng ngay từ đầu là điều cực kỳ quan trọng. Quant không phải là lĩnh vực có thể học “mẹo” hay “chiêu thức ngắn hạn”. Đây là một con đường đòi hỏi nền tảng toán học vững chắc, tư duy mô hình hóa rõ ràng và khả năng hiểu sâu bản chất rủi ro của thị trường.
Với nhà đầu tư Việt Nam, PAMM và Copy Trading thường được quảng bá chung một nhóm: “đầu tư thụ động”, “không cần biết phân tích”, “chỉ cần chọn người giỏi”. Nhưng nếu nhìn kỹ, hai mô hình này khác nhau ngay ở điểm nền tảng nhất: PAMM là bạn ủy quyền cho người khác giao dịch trên một tài khoản chung, còn Copy Trading là bạn vẫn giữ tài khoản của mình và chỉ sao chép lệnh. Nghe thì giống nhau, nhưng trong thực tế nó tạo ra hai cảm giác hoàn toàn khác: PAMM giống như “gửi tiền cho người khác lái xe hộ”, còn Copy Trading giống “ngồi xe của mình nhưng bật chế độ chạy theo xe dẫn đường”. Một khi bạn hiểu sự khác nhau về quyền kiểm soát, bạn sẽ thấy phần lớn câu chuyện “an toàn hơn” hay “nguy hiểm hơn” đều xoay quanh đúng điểm này.
Ở Việt Nam, khái niệm “penny stock” thường không được định nghĩa theo kiểu một mốc giá cứng như trong vài thị trường khác, nhưng trong thực tế nhà đầu tư vẫn hiểu khá giống nhau: đó là nhóm cổ phiếu giá thấp, thường thuộc doanh nghiệp vốn hóa nhỏ, thanh khoản có thể “lúc có lúc không”, và biến động giá thường mạnh hơn phần còn lại của thị trường. Có những mã giá thấp vì doanh nghiệp thật sự yếu, kết quả kinh doanh xấu kéo dài, bị suy giảm niềm tin nên giá bị “đè” xuống. Nhưng cũng có những mã giá thấp vì giai đoạn thị trường xấu làm định giá co lại, hoặc doanh nghiệp nhỏ nhưng đang trong quá trình tái cấu trúc, có câu chuyện hồi phục. Chính sự lẫn lộn giữa hai nhóm này tạo ra cảm giác “đi tìm vàng trong cát”, khiến penny trở thành thứ cực kỳ hấp dẫn với nhà đầu tư thích cảm giác “mua rẻ”.
Nếu nhìn lại 3–5 năm gần đây, algorithmic trading đã thay đổi rất nhiều. Trước đây, chỉ cần một chiến lược có equity curve đẹp trên backtest là đủ để nhiều người tin rằng mình đã tìm ra “công thức in tiền”. Nhưng bước sang 2026, môi trường thị trường buộc người làm algo phải trưởng thành hơn. Biến động cao hơn, dòng tiền luân chuyển nhanh hơn, và sự cạnh tranh cũng dày đặc hơn. Điều này khiến lợi thế không còn nằm ở việc bạn có một mô hình phức tạp hay không, mà nằm ở việc hệ thống của bạn có thực sự sống sót được trong điều kiện xấu hay không.
Tâm lý tài chính (Behavioral Finance) là một lĩnh vực nghiên cứu tâm lý học và kinh tế học, giúp giải thích tại sao những nhà đầu tư, dù có kỹ năng hay kiến thức, vẫn thường xuyên đưa ra các quyết định tài chính không hợp lý. Đặc biệt, tâm lý tài chính không đồng ý với giả thuyết của lý thuyết tài chính truyền thống, cho rằng mọi quyết định trong thị trường đều được đưa ra một cách hợp lý và tối ưu. Trái lại, tâm lý tài chính nhìn nhận rằng con người thường xuyên bị chi phối bởi cảm xúc, và điều này có thể dẫn đến những sai lầm trong giao dịch.
Market flow trading, hiểu đơn giản, không phải là cố đoán xem giá sẽ lên hay xuống, mà là quan sát dòng tiền và hành vi giao dịch đang thực sự diễn ra. Thay vì hỏi “cổ phiếu này rẻ hay đắt”, market flow đặt câu hỏi: ai đang mua, ai đang bán, và họ có đang quyết liệt hay không.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!