05/08/2025
480 lượt đọc
Trong quantitative trading (giao dịch định lượng), việc áp dụng các mô hình thống kê để đưa ra quyết định giao dịch có vai trò vô cùng quan trọng. Một trong những kỹ thuật trọng yếu trong quá trình này là kiểm thử giả thuyết, đặc biệt là việc sử dụng giá trị tới hạn (critical value), một yếu tố không thể thiếu trong việc quyết định liệu chiến lược giao dịch có hiệu quả hay không. Để hiểu rõ hơn về cách áp dụng giá trị tới hạn trong kiểm thử giả thuyết, cùng với các bước thực hiện trong bối cảnh giao dịch định lượng, chúng ta cần đi sâu vào lý thuyết và thực tiễn sử dụng giá trị tới hạn trong môi trường giao dịch tài chính.
Kiểm thử giả thuyết là một quy trình thống kê nhằm xác định liệu có đủ bằng chứng trong dữ liệu mẫu để bác bỏ giả thuyết không (null hypothesis). Trong quantitative trading, kiểm thử giả thuyết có thể được sử dụng để kiểm tra xem chiến lược giao dịch có mang lại lợi nhuận vượt trội so với chiến lược ngẫu nhiên hay không, hay chiến lược dự báo có thực sự hiệu quả.
Giá trị tới hạn (critical value) là điểm giới hạn trên phân phối xác suất của thống kê kiểm thử. Nó được sử dụng để so sánh với giá trị thống kê kiểm thử, giúp quyết định việc bác bỏ hay không bác bỏ giả thuyết không.
Giá trị tới hạn là ngưỡng mà tại đó, nếu giá trị thống kê kiểm thử vượt qua giá trị này, chúng ta sẽ bác bỏ giả thuyết không (H₀). Ngược lại, nếu giá trị thống kê kiểm thử nhỏ hơn giá trị tới hạn, giả thuyết không sẽ được giữ nguyên.
Trong giao dịch định lượng, giá trị tới hạn giúp đánh giá tính hiệu quả của các chiến lược giao dịch thông qua việc kiểm chứng các giả thuyết dựa trên dữ liệu thực tế. Việc sử dụng giá trị tới hạn có một số lợi ích quan trọng:
Kiểm thử giả thuyết trong giao dịch định lượng không chỉ giúp kiểm tra tính hiệu quả của một chiến lược giao dịch, mà còn có thể áp dụng trong các mô hình dự báo biến động giá, phân tích rủi ro hay kiểm tra sự ổn định của các mô hình giao dịch.
Trước khi tiến hành kiểm thử giả thuyết, các nhà giao dịch cần xác định rõ giả thuyết không (H₀) và giả thuyết thay thế (H₁). Trong môi trường quantitative trading, các giả thuyết này thường liên quan đến hiệu quả của một chiến lược giao dịch.
Ví dụ:
Giá trị thống kê kiểm thử là một con số được tính toán từ dữ liệu mẫu và phản ánh sự khác biệt giữa mẫu và giả thuyết không. Giá trị này có thể là một t-statistic, z-statistic, chi-square statistic, v.v., tùy thuộc vào loại kiểm thử giả thuyết mà bạn đang thực hiện.
Trong môi trường giao dịch định lượng, bạn có thể tính toán các trung bình lợi nhuận, độ lệch chuẩn của lợi nhuận, tỷ suất sinh lời, hoặc các chỉ số khác để làm cơ sở tính toán giá trị thống kê.
Giá trị tới hạn phụ thuộc vào mức độ ý nghĩa (α) mà bạn chọn. Ví dụ, nếu α = 0.05, bạn chấp nhận xác suất 5% để bác bỏ giả thuyết không khi nó thực sự đúng.
Giá trị tới hạn có thể được tra cứu từ bảng phân phối chuẩn hoặc phân phối t, tùy vào kiểu kiểm thử mà bạn đang sử dụng.
Cuối cùng, bạn sẽ so sánh giá trị thống kê kiểm thử với giá trị tới hạn đã tính toán:
Giả sử bạn muốn kiểm thử một chiến lược giao dịch cổ phiếu trong chỉ số VN30, với giả thuyết không là "Chiến lược không mang lại lợi nhuận vượt trội so với chiến lược mua và nắm giữ (buy-and-hold)".
Sau khi tính toán giá trị thống kê kiểm thử (T-test) cho lợi nhuận của chiến lược và so sánh với giá trị tới hạn ±1.96 (mức α = 0.05), bạn có thể quyết định xem chiến lược giao dịch có thực sự mang lại lợi nhuận vượt trội hay không.
Trong một chiến lược giao dịch sử dụng Chỉ báo Trung bình Di động (Moving Average) để dự đoán xu hướng giá cổ phiếu, bạn có thể áp dụng Z-test để kiểm tra sự khác biệt giữa lợi nhuận của chiến lược và lợi nhuận của thị trường chung.
Tính toán giá trị thống kê Z và so sánh với giá trị tới hạn từ bảng phân phối chuẩn để đưa ra quyết định.
Giá trị tới hạn đóng vai trò quyết định trong việc kiểm thử giả thuyết, đặc biệt là trong quantitative trading, giúp các nhà giao dịch đánh giá hiệu quả của các chiến lược giao dịch dựa trên dữ liệu và các mô hình thống kê. Việc sử dụng giá trị tới hạn không chỉ giúp kiểm soát lỗi loại I mà còn giúp đưa ra các quyết định giao dịch khoa học và chính xác hơn. Tuy nhiên, việc áp dụng giá trị tới hạn đòi hỏi sự hiểu biết sâu sắc về các mô hình thống kê, mức độ ý nghĩa, và phân phối xác suất, từ đó giúp tối ưu hóa chiến lược giao dịch và giảm thiểu rủi ro trong quá trình giao dịch.
Hãy xây dựng và kiểm thử chiến lược giao dịch phái sinh của bạn trên nền tảng QMTRADE trước khi sử dụng tiền thật để tránh những rủi ro không đáng có.
0 / 5
Trong vài thập kỷ qua, sự bùng nổ của công nghệ thông tin và phân tích dữ liệu đã làm thay đổi căn bản cách thị trường tài chính vận hành. Một trong những “công cụ” gây ảnh hưởng lớn nhất chính là Black Box Trading – hệ thống giao dịch dựa trên thuật toán, nơi mà logic ra quyết định nằm ẩn trong một cấu trúc lập trình kín, không được công khai.
Trong Quant trading, việc phân tích dữ liệu thị trường không chỉ dừng lại ở các chỉ số tổng hợp như giá mở cửa, đóng cửa, cao nhất, thấp nhất (OHLC) theo khung giờ phút hoặc ngày. Để hiểu sâu cách giá cả được hình thành và biến động trong từng khoảnh khắc, các nhà nghiên cứu và quỹ định lượng (quant funds) dựa vào một loại dữ liệu tinh vi hơn: Tick-by-Tick (TBT) Data. Đây là lớp dữ liệu vi mô (micro-level) phản ánh từng sự kiện trong order book, từ đó cung cấp một bức tranh chi tiết nhất về động lực cung – cầu trên thị trường.
Market Microstructure (Vi cấu trúc thị trường) được định nghĩa bởi National Bureau of Economic Research (NBER) là lĩnh vực tập trung vào kinh tế học của thị trường chứng khoán: cách thức thị trường được thiết kế, cơ chế khớp lệnh, hình thành giá, chi phí giao dịch và hành vi của nhà đầu tư. Nếu ví thị trường tài chính giống như một “cỗ máy”, thì market microstructure chính là bộ phận cơ khí và đường dây điện quyết định chiếc máy đó chạy nhanh, trơn tru hay chậm chạp.
Trong giao dịch tài chính, không phải lúc nào cũng là chuyện “mua rẻ bán đắt”. Với những tổ chức quản lý hàng tỷ USD, bài toán khó nhất lại nằm ở chỗ: làm sao mua/bán khối lượng cực lớn mà không tự tay đẩy giá đi ngược lại mình. Đây chính là lúc khái niệm High Volume Trading (giao dịch khối lượng lớn) xuất hiện.
Trong giao dịch định lượng (Quantitative Trading), việc sử dụng dữ liệu chính xác và có cấu trúc rõ ràng không chỉ giúp nhà đầu tư có cái nhìn tổng quan về thị trường mà còn đóng vai trò quan trọng trong việc đưa ra các quyết định giao dịch chính xác và kịp thời. Tuy nhiên, data handling (xử lý dữ liệu) lại là một bước quan trọng nhưng ít được chú trọng đúng mức. Cùng QM Capital tìm hiểu cách xử lý dữ liệu giúp tối ưu hóa chiến lược giao dịch và tại sao nó lại quan trọng trong Quantitative Trading.
Định lý Bayes, hay còn gọi là Luật Bayes, được đặt theo tên của nhà triết học và thống kê học người Anh Thomas Bayes. Định lý này mô tả cách thức tính toán xác suất của một sự kiện dựa trên kiến thức trước đó về những điều kiện có thể liên quan đến sự kiện đó.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!