02/12/2025
285 lượt đọc
Trong quantitative trading, việc dự đoán xác suất của một lệnh giao dịch thành công (hay thua lỗ) là một yếu tố quan trọng. Một trong những công cụ phổ biến được sử dụng để dự đoán xác suất này chính là logistic regression. Mặc dù có tên gọi là “regression” (hồi quy), logistic regression lại được thiết kế đặc biệt để giải quyết các vấn đề phân loại, tức là dự đoán xác suất của sự kiện nhị phân (như "win"/"loss", "success"/"failure").
Logistic regression là một mô hình hồi quy trong đó đầu ra là xác suất của sự kiện mà chúng ta muốn dự đoán. Ví dụ, khi giao dịch chứng khoán, mô hình này sẽ giúp bạn tính toán xác suất một lệnh mua vào sẽ có lãi, dựa trên các yếu tố như biến động giá, lịch sử giao dịch, và khối lượng giao dịch. Mô hình này có thể được áp dụng để dự đoán "win" hay "loss" cho mỗi lệnh giao dịch mà bạn thực hiện.
Một trong những lý do logistic regression được ưa chuộng trong quant trading là sự đơn giản và dễ hiểu của nó. Logistic regression không chỉ dự đoán liệu một sự kiện có xảy ra hay không mà còn cung cấp một xác suất để giúp các nhà giao dịch quản lý rủi ro một cách hợp lý hơn. Ví dụ, nếu mô hình dự đoán rằng xác suất của lệnh mua là 70%, bạn có thể quyết định đặt lệnh với size nhỏ hơn thay vì all-in.
Để hiểu rõ hơn về cách logistic regression có thể được áp dụng trong trading, hãy thử tưởng tượng bạn đang xây dựng mô hình dự đoán cho việc mua bán hợp đồng tương lai VN30. Các đặc điểm của thị trường sẽ được đưa vào mô hình dưới dạng các biến độc lập (independent variables) như:
Sau khi huấn luyện mô hình, output của logistic regression sẽ là xác suất lệnh mua vào sẽ có lãi, hay đơn giản hơn, khả năng "win" của mỗi lệnh giao dịch.
Ví dụ:
Tuy nhiên, logistic regression không phải lúc nào cũng chính xác 100%. Một trong những vấn đề lớn trong ứng dụng quant trading chính là việc mô hình quá bi quan hoặc quá lạc quan với các xác suất được dự đoán. Vì vậy, việc kiểm tra và calibrate mô hình là vô cùng quan trọng. Bạn có thể dùng calibration plot hoặc Hosmer-Lemeshow test để so sánh các giá trị xác suất được dự đoán và thực tế, giúp bạn điều chỉnh và làm cho mô hình chính xác hơn.
Logistic regression là một công cụ mạnh mẽ trong quant trading, giúp các nhà giao dịch dự đoán xác suất của các lệnh thành công hay thua lỗ. Tuy nhiên, để mô hình thực sự hiệu quả và chính xác, việc calibrate và kiểm tra lại mô hình là vô cùng quan trọng. Với những ứng dụng rõ ràng trong việc quản lý rủi ro và tối ưu hóa lệnh, logistic regression vẫn là một lựa chọn phổ biến trong toolkit của các nhà giao dịch.
0 / 5
Trong giao dịch theo hệ thống, khoảnh khắc khó chịu nhất không phải là một phiên thua lỗ lớn, mà là một chuỗi thua đều đặn kéo dài. Ở thị trường Việt Nam, đặc biệt với phái sinh VN30F1M, sáu tháng liên tục không hiệu quả là đủ để khiến phần lớn trader bắt đầu nghi ngờ mọi thứ mình đang làm.
Một trong những giả định ngầm nhưng có ảnh hưởng lớn nhất đến cách nhà đầu tư tiếp cận thị trường là việc coi thị trường tài chính như một cỗ máy. Theo cách nhìn này, nếu hiểu đủ rõ các biến số đầu vào, nếu xây dựng được mô hình đủ tinh vi, ta có thể dự đoán chính xác đầu ra – giá sẽ đi đâu, khi nào, và bao xa.
Mô hình head and shoulders (vai đầu vai) là một trong những mô hình phân tích kỹ thuật cơ bản nhưng rất mạnh mẽ trong việc dự đoán xu hướng thị trường. Mô hình này rất phổ biến trong các giao dịch chứng khoán cơ sở và phái sinh, đặc biệt là tại các thị trường có độ biến động cao như Việt Nam. Được coi là mô hình đảo chiều, head and shoulders thường xuất hiện sau một xu hướng tăng, báo hiệu rằng giá có thể đảo chiều giảm, hoặc có thể xuất hiện ngược lại sau một xu hướng giảm, báo hiệu sự đảo chiều thành tăng.
Khi trader mới bước vào thị trường, đặc biệt là phái sinh VN30, một trong những câu chuyện được kể nhiều nhất là: “Có market maker kéo giá quét stop”. Sau vài lần bị hit stop rất gọn, đúng đỉnh đúng đáy, cảm giác đó là hoàn toàn thật. Nhưng nếu dừng lại ở mức “có ai đó săn mình”, thì rất dễ đi lạc hướng.
Nếu phải mô tả thị trường tài chính giai đoạn 2026 bằng một cụm từ, thì đó là: khó định hình nhưng không hề yên ắng. Sau nhiều năm thị trường bị dẫn dắt bởi những câu chuyện lớn – từ COVID, kích thích tiền tệ, lạm phát cho tới AI – nhà đầu tư dần nhận ra một vấn đề: những narrative này không còn vận hành theo đường thẳng. Lãi suất không tăng mạnh nữa nhưng cũng không quay về mức cực thấp. Lạm phát hạ nhiệt nhưng vẫn dai dẳng. AI tiếp tục thay đổi nền kinh tế, nhưng lợi nhuận không còn phân bổ đồng đều như giai đoạn đầu. Trong một môi trường như vậy, đầu tư dựa trên một kịch bản duy nhất trở nên cực kỳ mong manh.
Với rất nhiều người bước vào trading định lượng, data mining gần như là phản xạ tự nhiên đầu tiên. Bạn có dữ liệu giá, có indicator, có máy tính đủ mạnh, vậy thì việc “quét” hàng trăm, hàng nghìn tổ hợp tham số để tìm ra chiến lược có lợi nhuận nghe rất hợp lý. Cảm giác này đặc biệt mạnh với những ai có nền tảng kỹ thuật: code chạy được, backtest ra equity curve đẹp, drawdown thấp, Sharpe cao – mọi thứ trông rất khoa học và thuyết phục.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!