Logistic Regression trong Quant Trading: Dự đoán xác suất thành công trong giao dịch

02/12/2025

12 lượt đọc

1. Giới Thiệu Về Logistic Regression và Vai Trò trong Quant Trading

Trong quantitative trading, việc dự đoán xác suất của một lệnh giao dịch thành công (hay thua lỗ) là một yếu tố quan trọng. Một trong những công cụ phổ biến được sử dụng để dự đoán xác suất này chính là logistic regression. Mặc dù có tên gọi là “regression” (hồi quy), logistic regression lại được thiết kế đặc biệt để giải quyết các vấn đề phân loại, tức là dự đoán xác suất của sự kiện nhị phân (như "win"/"loss", "success"/"failure").

Tại sao lại dùng Logistic Regression trong Trading?

Logistic regression là một mô hình hồi quy trong đó đầu ra là xác suất của sự kiện mà chúng ta muốn dự đoán. Ví dụ, khi giao dịch chứng khoán, mô hình này sẽ giúp bạn tính toán xác suất một lệnh mua vào sẽ có lãi, dựa trên các yếu tố như biến động giá, lịch sử giao dịch, và khối lượng giao dịch. Mô hình này có thể được áp dụng để dự đoán "win" hay "loss" cho mỗi lệnh giao dịch mà bạn thực hiện.

Một trong những lý do logistic regression được ưa chuộng trong quant trading là sự đơn giản và dễ hiểu của nó. Logistic regression không chỉ dự đoán liệu một sự kiện có xảy ra hay không mà còn cung cấp một xác suất để giúp các nhà giao dịch quản lý rủi ro một cách hợp lý hơn. Ví dụ, nếu mô hình dự đoán rằng xác suất của lệnh mua là 70%, bạn có thể quyết định đặt lệnh với size nhỏ hơn thay vì all-in.

2. Áp Dụng Logistic Regression trong Quant Trading

Để hiểu rõ hơn về cách logistic regression có thể được áp dụng trong trading, hãy thử tưởng tượng bạn đang xây dựng mô hình dự đoán cho việc mua bán hợp đồng tương lai VN30. Các đặc điểm của thị trường sẽ được đưa vào mô hình dưới dạng các biến độc lập (independent variables) như:

  1. Lợi nhuận trong các ngày trước (returns T-1, T-2,...)
  2. Biến động giá trong 5 ngày qua (volatility)
  3. Khối lượng giao dịch, tỷ lệ giao dịch giữa các lệnh mua/bán
  4. Vị trí giá hiện tại so với các đường trung bình động (MA20, MA50)

Sau khi huấn luyện mô hình, output của logistic regression sẽ là xác suất lệnh mua vào sẽ có lãi, hay đơn giản hơn, khả năng "win" của mỗi lệnh giao dịch.

Ví dụ:

  1. Sau khi train và test xong mô hình, bạn thấy kết quả AUC = 0.80, KS = 0.45.
  2. Khi backtest, bạn nhận thấy rằng các lệnh có xác suất "win" dự đoán là 70% thực sự có tỷ lệ thành công cao hơn so với những lệnh có xác suất thấp hơn.

Tuy nhiên, logistic regression không phải lúc nào cũng chính xác 100%. Một trong những vấn đề lớn trong ứng dụng quant trading chính là việc mô hình quá bi quan hoặc quá lạc quan với các xác suất được dự đoán. Vì vậy, việc kiểm tra và calibrate mô hình là vô cùng quan trọng. Bạn có thể dùng calibration plot hoặc Hosmer-Lemeshow test để so sánh các giá trị xác suất được dự đoán và thực tế, giúp bạn điều chỉnh và làm cho mô hình chính xác hơn.

3. Lợi Ích và Hạn Chế Của Logistic Regression Trong Quant Trading

Lợi ich:

  1. Dễ Hiểu và Áp Dụng: Logistic regression có thể được triển khai nhanh chóng và dễ dàng, đặc biệt với các nhà giao dịch mới bắt đầu. Bạn không cần phải xây dựng các mô hình quá phức tạp để đoán xác suất.
  2. Quản Lý Rủi Ro: Logistic regression cung cấp xác suất, giúp các nhà giao dịch dễ dàng điều chỉnh size của lệnh và mức độ rủi ro. Khi bạn biết rằng xác suất thắng của một lệnh là 80%, bạn có thể đặt size lớn hơn so với khi xác suất thắng chỉ là 40%.
  3. Phân Tích Chính Xác: Mô hình này cung cấp coefficients có thể giúp bạn hiểu mối quan hệ giữa các yếu tố đầu vào và kết quả cuối cùng, giúp tối ưu hóa các chiến lược giao dịch trong dài hạn.

Hạn chế:

  1. Multicollinearity: Logistic regression không hoạt động tốt khi các biến độc lập có sự tương quan cao với nhau. Nếu các chỉ báo trong chiến lược của bạn có sự trùng lặp, mô hình có thể bị bias hoặc không chính xác.
  2. Giới Hạn Về Quan Hệ Phi Tuyến: Nếu các dữ liệu của bạn có mối quan hệ phi tuyến tính (non-linear relationships), logistic regression có thể không thực sự hiệu quả.
  3. Sự Tổn Hại Nếu Không Calibrate: Nếu không thực hiện việc calibration đúng cách, bạn có thể gặp phải tình huống mà mô hình dự đoán đúng nhưng thực tế lại không phản ánh đúng xu hướng thị trường.

Kết Luận

Logistic regression là một công cụ mạnh mẽ trong quant trading, giúp các nhà giao dịch dự đoán xác suất của các lệnh thành công hay thua lỗ. Tuy nhiên, để mô hình thực sự hiệu quả và chính xác, việc calibrate và kiểm tra lại mô hình là vô cùng quan trọng. Với những ứng dụng rõ ràng trong việc quản lý rủi ro và tối ưu hóa lệnh, logistic regression vẫn là một lựa chọn phổ biến trong toolkit của các nhà giao dịch.

Chia sẻ bài viết

Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Làm thế nào để code và backtest một chiến lược long–short thực sự dùng được?
30/11/2025
24 lượt đọc

Làm thế nào để code và backtest một chiến lược long–short thực sự dùng được? C

Nếu bỏ hết “mỹ từ” đi, long–short đơn giản là cách tách phần thị trường chung (beta) ra khỏi phần khác biệt do mô hình (alpha). Thay vì chỉ mua những gì mình thích, ta vừa long thứ mình cho là sẽ chạy “tương đối tốt hơn”, vừa short thứ mình cho là sẽ chạy “tương đối kém hơn”, rồi ghép lại thành một danh mục gần như trung hòa với thị trường.

Phát hiện thay đổi chế độ (Regime Change) trên thị trường với mô hình Breakout và Crossover Models
28/11/2025
51 lượt đọc

Phát hiện thay đổi chế độ (Regime Change) trên thị trường với mô hình Breakout và Crossover Models C

Trong lĩnh vực giao dịch tài chính, việc phát hiện sự thay đổi chế độ của thị trường (regime change) đóng vai trò quan trọng trong việc xác định xu hướng và điều chỉnh chiến lược giao dịch. Hai mô hình phổ biến để phát hiện sự thay đổi chế độ là Breakout Model và Crossover Model. Cả hai mô hình này đều được ứng dụng rộng rãi trong các chiến lược giao dịch tự động (quant trading) và có thể được tối ưu hóa để sử dụng hiệu quả tại thị trường Việt Nam. Trong bài viết này, chúng ta sẽ tìm hiểu sâu về hai mô hình này, cách áp dụng chúng, và cách phát hiện sự thay đổi chế độ trong thị trường tài chính Việt Nam.

Tại sao dùng NẾN NHẬT để tự động hóa giao dịch
26/11/2025
54 lượt đọc

Tại sao dùng NẾN NHẬT để tự động hóa giao dịch C

Để hiểu được lý do tại sao nến Nhật (Japanese Candlestick) lại là công cụ mạnh mẽ trong giao dịch, ta cần bắt đầu từ khái niệm cơ bản. Mỗi cây nến đại diện cho 4 giá trị quan trọng trong một khoảng thời gian nhất định (tùy thuộc vào khung thời gian mà trader chọn: 1 phiên, 1 giờ, v.v.):

Khối lượng giao dịch và ảnh hưởng như thế nào đến chiến lược quant trading
25/11/2025
72 lượt đọc

Khối lượng giao dịch và ảnh hưởng như thế nào đến chiến lược quant trading C

Khối lượng giao dịch (trading volume) là một yếu tố quan trọng không thể thiếu trong bất kỳ chiến lược giao dịch nào, đặc biệt là trong lĩnh vực quant trading. Khối lượng giao dịch giúp các nhà đầu tư đánh giá sự quan tâm và hành vi của thị trường đối với một tài sản, từ đó đưa ra quyết định chính xác về thời điểm tham gia và thoái lui. Đặc biệt tại thị trường phái sinh Việt Nam, nơi sự phát triển còn khá mới mẻ nhưng đang có tốc độ tăng trưởng mạnh mẽ, việc hiểu rõ vai trò và tác động của khối lượng giao dịch là yếu tố không thể thiếu đối với các nhà đầu tư áp dụng chiến lược quant.

Bản chất của Swing Trading trong đầu tư
24/11/2025
87 lượt đọc

Bản chất của Swing Trading trong đầu tư C

Swing trading là kiểu giao dịch dựa trên việc tận dụng những nhịp dao động của thị trường, thường kéo dài vài phiên đến vài tuần. Đây không phải câu chuyện “ngồi canh từng phút từng giây”, mà là cách tiếp cận trung hạn, bám nhịp giá và nhịp dòng tiền. Khi áp dụng vào thị trường Việt Nam, swing trading lại càng phù hợp hơn, đơn giản vì VN-Index và nhóm VN30 luôn tồn tại những dao động vừa đủ lớn để trader có thể tận dụng, nhưng không quá nhiễu như các thị trường crypto hay forex.

Mô hình Markowitz: Tối ưu hóa Danh Mục đầu tư – Lý thuyết và Ứng dụng thực tiễn
19/11/2025
78 lượt đọc

Mô hình Markowitz: Tối ưu hóa Danh Mục đầu tư – Lý thuyết và Ứng dụng thực tiễn C

Mô hình Markowitz, hay còn gọi là Mô hình Trung Bình - Phương Sai (Mean-Variance Model), là nền tảng của lý thuyết danh mục đầu tư hiện đại và đã được phát triển bởi Harry Markowitz vào năm 1952. Mô hình này được xem là một trong những công cụ mạnh mẽ giúp các nhà đầu tư xây dựng danh mục đầu tư tối ưu, kết hợp giữa các tài sản khác nhau sao cho tối đa hóa lợi nhuận kỳ vọng trong khi giảm thiểu rủi ro. Cốt lõi của mô hình là phân tích sự kết hợp giữa các tài sản dựa trên lợi nhuận kỳ vọng và độ biến động (rủi ro) của chúng.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!