Phân tích định lượng trong đầu tư chứng khoán

24/01/2024

14,224 lượt đọc

Phân tích định lượng trong đầu tư chứng khoán


Trong thời kỳ tài chính biến động nhanh chóng, các nhà đầu tư đang tìm cách tối ưu hóa hiệu suất đầu tư danh mục đầu của mình. Những giải pháp này có thể bao gồm việc sử dụng các công cụ phân tích định lượng, áp dụng các mô hình dự báo tài chính dựa trên khoa học dữ liệu, và phân bổ danh mục đầu tư một cách cẩn thận.


1. Phân tích định lượng là gì?

Phân tích định lượng là một quá trình sử dụng các phương pháp thống kê để thu thập, xử lý và phân tích dữ liệu định lượng. Phân tích định lượng được sử dụng trong nhiều lĩnh vực khác nhau, bao gồm khoa học, kỹ thuật, kinh doanh, xã hội học,...


Phân tích định lượng trong đầu tư chứng khoán là việc sử dụng các phương pháp thống kê để phân tích dữ liệu về giá cổ phiếu, biến động thị trường và các yếu tố khác có thể ảnh hưởng đến giá cổ phiếu. Phân tích định lượng trong đầu tư chứng khoán được sử dụng để đưa ra các dự báo về giá cổ phiếu, xác định cơ hội đầu tư và quản lý rủi ro mà không bị ảnh hưởng bởi yếu tố cảm tính.



2. Ứng dụng trong lĩnh vực tài chính, đầu tư

Phân tích định lượng là một công cụ quan trọng được sử dụng trong lĩnh vực tài chính, đầu tư. Phân tích định lượng có thể được sử dụng để thực hiện nhiều nhiệm vụ khác nhau, bao gồm:



Ví dụ:



Có thể thấy, phân tích định lượng đã và đang ngày càng được ứng dụng rộng rãi trong lĩnh vực tài chính.



3. Ưu, nhược điểm của phân tích định lượng trong lĩnh vực tài chính, đầu tư

Ưu điểm:



Nhược điểm:



Để sử dụng phân tích định lượng một cách hiệu quả, các nhà đầu tư cần hiểu rõ những thách thức này. Các nhà đầu tư cần có kiến thức chuyên môn về thống kê và lập trình máy tính để khai thác tối đa ưu điểm của phân tích định lượng. Ngoài ra, các nhà đầu tư cũng cần sử dụng phân tích định lượng một cách linh hoạt và kết hợp với các yếu tố khác, chẳng hạn như yếu tố thông tin,... để đưa ra các quyết định đầu tư sáng suốt.


Thuỳ Trang


Tài liệu tham khảo:

IIFL Securities. (n.d.). Advantages and Disadvantages of Quantitative Trading | IIFL Knowledge Center. https://www.indiainfoline.com/knowledge-center/trading-account/advantages-and-disadvantages-of-quantitative-trading





Chia sẻ bài viết

Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Edge trong trading: từ khái niệm trừu tượng đến lợi thế có thể sống sót qua chu kỳ thị trường
05/01/2026
27 lượt đọc

Edge trong trading: từ khái niệm trừu tượng đến lợi thế có thể sống sót qua chu kỳ thị trường C

Trong trading, “edge” thường được nhắc đến như một thứ gì đó rất mơ hồ: một cảm giác thị trường, một mô hình quen mắt, hay một bộ quy tắc “đã từng kiếm tiền”. Nhưng nếu tiếp cận thị trường dưới góc độ định lượng, edge không phải là cảm giác, càng không phải là niềm tin. Edge là một đặc tính thống kê của hành động giao dịch, chỉ có thể được xác nhận khi quan sát trên một tập mẫu đủ lớn và đủ đa dạng về điều kiện thị trường.

Chiến lược giao dịch Price Action: Cách đọc biểu đồ giá để hiểu thị trường
03/01/2026
72 lượt đọc

Chiến lược giao dịch Price Action: Cách đọc biểu đồ giá để hiểu thị trường C

Price Action thường bị hiểu nhầm như một tập hợp các mô hình nến hoặc vài đường kẻ hỗ trợ – kháng cự. Thực tế, nếu chỉ dừng ở đó thì Price Action không khác gì một dạng technical analysis tối giản. Bản chất sâu hơn của Price Action là một hệ quy chiếu để hiểu cách thị trường vận hành, nơi giá không còn là kết quả ngẫu nhiên của tin tức, mà là biểu hiện trực tiếp của hành vi con người, dòng tiền và cấu trúc thanh khoản.

Jim Simons: Không phải người “đánh bại” thị trường, mà là người thay đổi cách thị trường được nhìn nhận
02/01/2026
105 lượt đọc

Jim Simons: Không phải người “đánh bại” thị trường, mà là người thay đổi cách thị trường được nhìn nhận C

Khi nhắc đến Jim Simons, phần lớn mọi người sẽ bắt đầu bằng con số lợi nhuận: Medallion Fund đạt trung bình khoảng 66% mỗi năm trước phí trong nhiều thập kỷ, một thành tích vượt xa mọi quỹ đầu tư khác từng tồn tại. Nhưng nếu chỉ nhìn Jim Simons như một “nhà đầu tư giỏi”, ta sẽ bỏ lỡ bản chất thực sự của câu chuyện. Simons không đơn thuần tìm ra một chiến lược tốt hơn, ông thay đổi hoàn toàn cách con người tiếp cận thị trường tài chính. Trước Simons, trading chủ yếu được xem là nghệ thuật pha trộn giữa kinh nghiệm, trực giác và phân tích cơ bản. Sau Simons, trading dần được tái định nghĩa như một bài toán khoa học, nơi dữ liệu, thống kê và xác suất đóng vai trò trung tâm.

PCA–VaR cho danh mục lãi suất: Góc nhìn đầu tư định lượng trong bối cảnh thị trường Việt Nam
02/01/2026
63 lượt đọc

PCA–VaR cho danh mục lãi suất: Góc nhìn đầu tư định lượng trong bối cảnh thị trường Việt Nam C

Khi làm đầu tư định lượng, rất nhiều người có xu hướng xem Value at Risk (VaR) là một công cụ “thuần quản trị rủi ro”, chỉ dành cho ngân hàng hoặc bộ phận middle office. Tuy nhiên, nếu nhìn đúng bản chất, VaR – đặc biệt là VaR dựa trên Principal Component Analysis (PCA) – lại là một công cụ rất phù hợp để hiểu cấu trúc rủi ro của danh mục đầu tư vĩ mô, trái phiếu, hoặc chiến lược định lượng nhạy với lãi suất. Vấn đề không nằm ở việc “báo cáo VaR cho ai”, mà nằm ở chỗ bạn có hiểu mình đang đặt cược vào dạng biến động nào của thị trường hay không.

Kiểm định Market Efficiency bằng Python: Run Test của Bachelier
30/12/2025
87 lượt đọc

Kiểm định Market Efficiency bằng Python: Run Test của Bachelier C

Khi làm trading định lượng, một câu hỏi rất căn bản nhưng thường bị bỏ qua là: thị trường mình đang nghiên cứu có thực sự cho phép tồn tại edge hay không? Trước khi xây momentum, mean reversion hay bất kỳ mô hình ML nào, việc kiểm tra mức độ “ngẫu nhiên” của chuỗi lợi suất là bước rất nên làm. Một trong những kiểm định cổ điển, đơn giản nhưng vẫn có giá trị thực tiễn là Run Test, được đề xuất bởi Louis Bachelier – người đặt nền móng cho tài chính định lượng từ đầu thế kỷ 20.

Đa dạng hóa ở thị trường Việt Nam: từ khái niệm “giảm rủi ro” đến bài toán tạo lợi nhuận bền vững
28/12/2025
171 lượt đọc

Đa dạng hóa ở thị trường Việt Nam: từ khái niệm “giảm rủi ro” đến bài toán tạo lợi nhuận bền vững C

Ở thị trường Việt Nam, khái niệm đa dạng hóa thường bị hiểu rất hẹp và đôi khi sai bản chất. Phần lớn nhà đầu tư cá nhân cho rằng chỉ cần nắm giữ 10–20 cổ phiếu khác nhau, thuộc nhiều ngành khác nhau, thì danh mục đã được đa dạng hóa. Trong giai đoạn thị trường đi lên, cách làm này có vẻ hợp lý vì hầu như cổ phiếu nào cũng tăng, và sự khác biệt giữa các mã không quá quan trọng. Nhưng khi thị trường bước vào pha điều chỉnh mạnh, nhà đầu tư mới nhận ra rằng danh mục “đa dạng” của mình thực chất lại phản ứng gần như giống hệt chỉ số chung. Điều này dẫn đến một kết luận phổ biến nhưng nguy hiểm: đa dạng hóa ở Việt Nam không hiệu quả.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!