24/01/2024
13,051 lượt đọc
Trong thời kỳ tài chính biến động nhanh chóng, các nhà đầu tư đang tìm cách tối ưu hóa hiệu suất đầu tư danh mục đầu của mình. Những giải pháp này có thể bao gồm việc sử dụng các công cụ phân tích định lượng, áp dụng các mô hình dự báo tài chính dựa trên khoa học dữ liệu, và phân bổ danh mục đầu tư một cách cẩn thận.
Phân tích định lượng là một quá trình sử dụng các phương pháp thống kê để thu thập, xử lý và phân tích dữ liệu định lượng. Phân tích định lượng được sử dụng trong nhiều lĩnh vực khác nhau, bao gồm khoa học, kỹ thuật, kinh doanh, xã hội học,...
Phân tích định lượng trong đầu tư chứng khoán là việc sử dụng các phương pháp thống kê để phân tích dữ liệu về giá cổ phiếu, biến động thị trường và các yếu tố khác có thể ảnh hưởng đến giá cổ phiếu. Phân tích định lượng trong đầu tư chứng khoán được sử dụng để đưa ra các dự báo về giá cổ phiếu, xác định cơ hội đầu tư và quản lý rủi ro mà không bị ảnh hưởng bởi yếu tố cảm tính.
Phân tích định lượng là một công cụ quan trọng được sử dụng trong lĩnh vực tài chính, đầu tư. Phân tích định lượng có thể được sử dụng để thực hiện nhiều nhiệm vụ khác nhau, bao gồm:
Ví dụ:
Có thể thấy, phân tích định lượng đã và đang ngày càng được ứng dụng rộng rãi trong lĩnh vực tài chính.
Ưu điểm:
Nhược điểm:
Để sử dụng phân tích định lượng một cách hiệu quả, các nhà đầu tư cần hiểu rõ những thách thức này. Các nhà đầu tư cần có kiến thức chuyên môn về thống kê và lập trình máy tính để khai thác tối đa ưu điểm của phân tích định lượng. Ngoài ra, các nhà đầu tư cũng cần sử dụng phân tích định lượng một cách linh hoạt và kết hợp với các yếu tố khác, chẳng hạn như yếu tố thông tin,... để đưa ra các quyết định đầu tư sáng suốt.
Thuỳ Trang
Tài liệu tham khảo:
IIFL Securities. (n.d.). Advantages and Disadvantages of Quantitative Trading | IIFL Knowledge Center. https://www.indiainfoline.com/knowledge-center/trading-account/advantages-and-disadvantages-of-quantitative-trading
0 / 5
Trong vài thập kỷ qua, sự bùng nổ của công nghệ thông tin và phân tích dữ liệu đã làm thay đổi căn bản cách thị trường tài chính vận hành. Một trong những “công cụ” gây ảnh hưởng lớn nhất chính là Black Box Trading – hệ thống giao dịch dựa trên thuật toán, nơi mà logic ra quyết định nằm ẩn trong một cấu trúc lập trình kín, không được công khai.
Trong Quant trading, việc phân tích dữ liệu thị trường không chỉ dừng lại ở các chỉ số tổng hợp như giá mở cửa, đóng cửa, cao nhất, thấp nhất (OHLC) theo khung giờ phút hoặc ngày. Để hiểu sâu cách giá cả được hình thành và biến động trong từng khoảnh khắc, các nhà nghiên cứu và quỹ định lượng (quant funds) dựa vào một loại dữ liệu tinh vi hơn: Tick-by-Tick (TBT) Data. Đây là lớp dữ liệu vi mô (micro-level) phản ánh từng sự kiện trong order book, từ đó cung cấp một bức tranh chi tiết nhất về động lực cung – cầu trên thị trường.
Market Microstructure (Vi cấu trúc thị trường) được định nghĩa bởi National Bureau of Economic Research (NBER) là lĩnh vực tập trung vào kinh tế học của thị trường chứng khoán: cách thức thị trường được thiết kế, cơ chế khớp lệnh, hình thành giá, chi phí giao dịch và hành vi của nhà đầu tư. Nếu ví thị trường tài chính giống như một “cỗ máy”, thì market microstructure chính là bộ phận cơ khí và đường dây điện quyết định chiếc máy đó chạy nhanh, trơn tru hay chậm chạp.
Trong giao dịch tài chính, không phải lúc nào cũng là chuyện “mua rẻ bán đắt”. Với những tổ chức quản lý hàng tỷ USD, bài toán khó nhất lại nằm ở chỗ: làm sao mua/bán khối lượng cực lớn mà không tự tay đẩy giá đi ngược lại mình. Đây chính là lúc khái niệm High Volume Trading (giao dịch khối lượng lớn) xuất hiện.
Trong giao dịch định lượng (Quantitative Trading), việc sử dụng dữ liệu chính xác và có cấu trúc rõ ràng không chỉ giúp nhà đầu tư có cái nhìn tổng quan về thị trường mà còn đóng vai trò quan trọng trong việc đưa ra các quyết định giao dịch chính xác và kịp thời. Tuy nhiên, data handling (xử lý dữ liệu) lại là một bước quan trọng nhưng ít được chú trọng đúng mức. Cùng QM Capital tìm hiểu cách xử lý dữ liệu giúp tối ưu hóa chiến lược giao dịch và tại sao nó lại quan trọng trong Quantitative Trading.
Định lý Bayes, hay còn gọi là Luật Bayes, được đặt theo tên của nhà triết học và thống kê học người Anh Thomas Bayes. Định lý này mô tả cách thức tính toán xác suất của một sự kiện dựa trên kiến thức trước đó về những điều kiện có thể liên quan đến sự kiện đó.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!