24/01/2024
13,963 lượt đọc
Trong thời kỳ tài chính biến động nhanh chóng, các nhà đầu tư đang tìm cách tối ưu hóa hiệu suất đầu tư danh mục đầu của mình. Những giải pháp này có thể bao gồm việc sử dụng các công cụ phân tích định lượng, áp dụng các mô hình dự báo tài chính dựa trên khoa học dữ liệu, và phân bổ danh mục đầu tư một cách cẩn thận.
Phân tích định lượng là một quá trình sử dụng các phương pháp thống kê để thu thập, xử lý và phân tích dữ liệu định lượng. Phân tích định lượng được sử dụng trong nhiều lĩnh vực khác nhau, bao gồm khoa học, kỹ thuật, kinh doanh, xã hội học,...
Phân tích định lượng trong đầu tư chứng khoán là việc sử dụng các phương pháp thống kê để phân tích dữ liệu về giá cổ phiếu, biến động thị trường và các yếu tố khác có thể ảnh hưởng đến giá cổ phiếu. Phân tích định lượng trong đầu tư chứng khoán được sử dụng để đưa ra các dự báo về giá cổ phiếu, xác định cơ hội đầu tư và quản lý rủi ro mà không bị ảnh hưởng bởi yếu tố cảm tính.
Phân tích định lượng là một công cụ quan trọng được sử dụng trong lĩnh vực tài chính, đầu tư. Phân tích định lượng có thể được sử dụng để thực hiện nhiều nhiệm vụ khác nhau, bao gồm:
Ví dụ:
Có thể thấy, phân tích định lượng đã và đang ngày càng được ứng dụng rộng rãi trong lĩnh vực tài chính.
Ưu điểm:
Nhược điểm:
Để sử dụng phân tích định lượng một cách hiệu quả, các nhà đầu tư cần hiểu rõ những thách thức này. Các nhà đầu tư cần có kiến thức chuyên môn về thống kê và lập trình máy tính để khai thác tối đa ưu điểm của phân tích định lượng. Ngoài ra, các nhà đầu tư cũng cần sử dụng phân tích định lượng một cách linh hoạt và kết hợp với các yếu tố khác, chẳng hạn như yếu tố thông tin,... để đưa ra các quyết định đầu tư sáng suốt.
Thuỳ Trang
Tài liệu tham khảo:
IIFL Securities. (n.d.). Advantages and Disadvantages of Quantitative Trading | IIFL Knowledge Center. https://www.indiainfoline.com/knowledge-center/trading-account/advantages-and-disadvantages-of-quantitative-trading
0 / 5
Để hiểu được lý do tại sao nến Nhật (Japanese Candlestick) lại là công cụ mạnh mẽ trong giao dịch, ta cần bắt đầu từ khái niệm cơ bản. Mỗi cây nến đại diện cho 4 giá trị quan trọng trong một khoảng thời gian nhất định (tùy thuộc vào khung thời gian mà trader chọn: 1 phiên, 1 giờ, v.v.):
Khối lượng giao dịch (trading volume) là một yếu tố quan trọng không thể thiếu trong bất kỳ chiến lược giao dịch nào, đặc biệt là trong lĩnh vực quant trading. Khối lượng giao dịch giúp các nhà đầu tư đánh giá sự quan tâm và hành vi của thị trường đối với một tài sản, từ đó đưa ra quyết định chính xác về thời điểm tham gia và thoái lui. Đặc biệt tại thị trường phái sinh Việt Nam, nơi sự phát triển còn khá mới mẻ nhưng đang có tốc độ tăng trưởng mạnh mẽ, việc hiểu rõ vai trò và tác động của khối lượng giao dịch là yếu tố không thể thiếu đối với các nhà đầu tư áp dụng chiến lược quant.
Swing trading là kiểu giao dịch dựa trên việc tận dụng những nhịp dao động của thị trường, thường kéo dài vài phiên đến vài tuần. Đây không phải câu chuyện “ngồi canh từng phút từng giây”, mà là cách tiếp cận trung hạn, bám nhịp giá và nhịp dòng tiền. Khi áp dụng vào thị trường Việt Nam, swing trading lại càng phù hợp hơn, đơn giản vì VN-Index và nhóm VN30 luôn tồn tại những dao động vừa đủ lớn để trader có thể tận dụng, nhưng không quá nhiễu như các thị trường crypto hay forex.
Mô hình Markowitz, hay còn gọi là Mô hình Trung Bình - Phương Sai (Mean-Variance Model), là nền tảng của lý thuyết danh mục đầu tư hiện đại và đã được phát triển bởi Harry Markowitz vào năm 1952. Mô hình này được xem là một trong những công cụ mạnh mẽ giúp các nhà đầu tư xây dựng danh mục đầu tư tối ưu, kết hợp giữa các tài sản khác nhau sao cho tối đa hóa lợi nhuận kỳ vọng trong khi giảm thiểu rủi ro. Cốt lõi của mô hình là phân tích sự kết hợp giữa các tài sản dựa trên lợi nhuận kỳ vọng và độ biến động (rủi ro) của chúng.
Thống kê Bayes xuất phát từ một nguyên tắc rất tự nhiên nhưng lại có sức mạnh đặc biệt lớn trong các hệ thống phức tạp như thị trường tài chính: niềm tin của chúng ta về một hiện tượng không cố định, mà thay đổi khi có thêm thông tin mới. Trong bối cảnh tài chính, điều này đặc biệt quan trọng vì thị trường không có trạng thái cân bằng lâu dài; thay vào đó, nó liên tục chuyển đổi qua nhiều chế độ (regime), thường xuyên chịu tác động bởi tin tức, dòng tiền, tâm lý nhà đầu tư và các yếu tố bất ngờ khác. Định lý Bayes cho phép chúng ta mô hình hóa sự thay đổi này thông qua ba thành phần cơ bản: “prior” – niềm tin ban đầu, “likelihood” – khả năng bằng chứng xuất hiện nếu giả thuyết đúng, và “posterior” – niềm tin đã được cập nhật.
Bước ngoặt của một người làm trading không phải lúc họ học được thêm một chỉ báo mới, mà là lúc họ nhận ra: thị trường không hề “trơn tru” và ngẫu nhiên như sách vở nói. Nó có những điểm lệch, những nhịp lặp lại, những hành vi rất… con người. Và nếu mình đủ kiên nhẫn để nhìn sâu vào dữ liệu, những điểm lệch đó chính là chỗ để mình kiếm tiền một cách có kỷ luật. Đó là cách nhiều người bước từ “trade theo cảm giác” sang “quant trading”.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!