21/01/2025
1,155 lượt đọc
Trong lĩnh vực giao dịch thuật toán (algorithmic trading), Quants và Technical Analysts là hai vai trò quan trọng nhưng lại mang những đặc điểm, nhiệm vụ và cách tiếp cận khác nhau. Mặc dù cùng mục tiêu tối ưu hóa chiến lược giao dịch, sự kết hợp giữa hai vai trò này thường mang lại hiệu quả cao hơn so với khi hoạt động độc lập. Trong bài viết này, QMCapital sẽ phân tích sự khác biệt, điểm tương đồng và lợi ích của việc kết hợp Quants và Technical Analysts.
Quants (Quantitative Analysts) và Technical Analysts là những chuyên gia làm việc trong lĩnh vực tài chính, đặc biệt là giao dịch thuật toán. Tuy nhiên, cách tiếp cận và vai trò của họ có sự khác biệt lớn:
Mặc dù khác biệt, cả hai vai trò đều hướng đến mục tiêu tối ưu hóa lợi nhuận và giảm thiểu rủi ro cho nhà đầu tư.
Cả Quants và Technical Analysts đều đóng vai trò thiết yếu trong giao dịch thuật toán và có những điểm tương đồng sau:
Dù có những điểm chung, Quants và Technical Analysts lại khác biệt rõ rệt trong cách tiếp cận và mục tiêu:
Tiêu chí | Quants | Technical Analysts |
Mục tiêu chính | Tập trung vào việc tạo ra chiến lược giao dịch dựa trên các công cụ thống kê. | Dự đoán hành vi thị trường trong tương lai dựa trên dữ liệu lịch sử. |
Trình độ học vấn | Yêu cầu kiến thức sâu về toán học, thống kê, và tài chính. | Cần chứng chỉ liên quan đến phân tích tài chính như Certified Financial Technician (CFTe) hoặc Certified Market Technician (CMT). |
Công cụ sử dụng | Kết hợp các chỉ số kỹ thuật với học máy (machine learning), mạng nơ-ron nhân tạo (neural networks), và các công cụ thống kê như Sharpe ratio. | Dựa vào các chỉ số kỹ thuật cơ bản như đường trung bình, dao động ngẫu nhiên (stochastic), và các quan sát dựa trên dữ liệu thị trường. |
Kết quả đầu ra | Đưa ra các chỉ số như tỷ lệ Sharpe, mức rủi ro dự kiến, lợi nhuận kỳ vọng. | Đưa ra tín hiệu mua hoặc bán dựa trên tình huống tương tự trong quá khứ. |
Một ví dụ quen thuộc trong Technical Analysis là sử dụng chỉ báo dao động ngẫu nhiên (stochastic oscillator). Chỉ báo này có hai thành phần chính:
Khi giá trị %K vượt trên 80, thị trường được coi là đang trong tình trạng "quá mua" (overbought), và khi giá trị %K dưới 20, thị trường ở tình trạng "quá bán" (oversold).
Trong khi đó, một Quantitative Analyst sẽ sử dụng chỉ báo như stochastic oscillator để tạo chiến lược giao dịch dựa trên tỷ lệ Sharpe (Sharpe ratio). Công thức tính tỷ lệ Sharpe như sau:
Sharpe Ratio = (Rp - Rf) / σ
Ví dụ, nếu danh mục đầu tư có lợi nhuận kỳ vọng hàng năm là 12%, lãi suất phi rủi ro là 7%, và độ lệch chuẩn là 8%, tỷ lệ Sharpe sẽ là:
Sharpe Ratio = (12% - 7%) / 8% = 0.625
Chỉ số Sharpe cao thể hiện lợi nhuận tốt hơn trên mỗi đơn vị rủi ro.
Khi Quants và Technical Analysts làm việc cùng nhau, hiệu quả đạt được sẽ lớn hơn rất nhiều so với khi làm riêng lẻ. Những lợi ích bao gồm:
Để trở thành Quant, bạn cần có kiến thức chuyên sâu về các lĩnh vực sau:
Kỹ năng lập trình, đặc biệt là trong các ngôn ngữ như Python, R, hoặc MATLAB, cũng rất cần thiết.
Technical Analysts thường tập trung vào tài chính và các chứng chỉ liên quan đến phân tích thị trường như:
Những chứng chỉ này giúp bạn nắm vững các công cụ và phương pháp phân tích kỹ thuật.
Với sự phát triển không ngừng của công nghệ, vai trò của cả Quants và Technical Analysts đang dần thay đổi. Các công cụ như trí tuệ nhân tạo (AI) và học sâu (deep learning) đang dần trở thành xu hướng trong việc tối ưu hóa giao dịch. Điều này không chỉ giúp Quants tăng cường khả năng dự báo mà còn cung cấp cho Technical Analysts các công cụ mạnh mẽ hơn để phân tích thị trường.
Khi các công cụ công nghệ ngày càng phổ biến, việc hợp tác giữa Quants và Technical Analysts sẽ càng trở nên quan trọng hơn. Đây là cách tối ưu để tận dụng triệt để dữ liệu và đưa ra các quyết định giao dịch chính xác.
Cả Quants và Technical Analysts đều có vai trò quan trọng trong giao dịch thuật toán, mỗi bên đóng góp những giá trị riêng biệt. Tuy nhiên, khi kết hợp hai vai trò này, hiệu quả giao dịch sẽ tăng lên nhờ vào sự bổ trợ giữa dự đoán thị trường và tối ưu hóa chiến lược. Để khai thác tối đa lợi ích, việc hiểu rõ đặc điểm của từng vai trò và phối hợp chúng một cách hài hòa là điều cần thiết.
Hãy xây dựng và kiểm thử chiến lược giao dịch phái sinh của bạn trên nền tảng QMTRADE trước khi sử dụng tiền thật để tránh những rủi ro không đáng có.
0 / 5
Trong đầu tư chứng khoán, “động lượng” (momentum) là một trong những chiến lược kinh điển – tận dụng xu hướng đã hình thành để xác định cơ hội sinh lời. Các nghiên cứu cho thấy, chỉ số momentum của MSCI đã vượt trội so với chỉ số vốn hóa thị trường khoảng 1.4% mỗi năm trong thập kỷ qua. Dưới đây là 5 chỉ báo động lượng phổ biến, cùng ưu – nhược điểm và gợi ý ứng dụng thực tiễn dành cho nhà đầu tư cá nhân.
Trong giao dịch định lượng, backtest chỉ là bước khởi đầu. Một chuỗi kết quả ấn tượng trên dữ liệu lịch sử không đảm bảo chiến lược của bạn sẽ “sống sót” khi gặp dữ liệu thực. Để tự tin triển khai live trading, cần thiết lập một quy trình robust backtesting tức kiểm chứng chiến lược qua nhiều lớp ngăn ngừa sai lệch, đảm bảo tính ổn định, loại bỏ nguy cơ vỡ trận khi thị trường bất ngờ đổi chiều.
Trong đầu tư, không ít chiến lược hiện đại dựa vào thuật toán, trí tuệ nhân tạo hay dữ liệu vĩ mô phức tạp. Thế nhưng, 4 cách tiếp cận kinh điển sau đây vẫn được hàng loạt huyền thoại tài chính tin dùng bởi tính đơn giản, nguyên bản và đã minh chứng qua thời gian. Dù bạn là nhà đầu tư dài hạn hay trader lướt sóng, việc hiểu rõ ưu – nhược điểm của từng phong cách sẽ giúp xây dựng danh mục tối ưu, phù hợp với mục tiêu và khả năng chịu đựng rủi ro của bản thân.
Strategy Decay thể hiện qua sự giảm dần tính hiệu quả của chiến lược giao dịch định lượng sau một thời gian vận hành. Ngay từ ngày đầu triển khai, một chiến lược có thể ghi nhận mức lợi suất ổn định 15 % mỗi năm và tỷ lệ thắng lệnh 52 %, nhưng sau năm đầu live trading, con số này nhanh chóng trượt về 8 % lợi nhuận và 45 % tỷ lệ thắng, trong khi mức sụt giảm tối đa trở nên sâu hơn, từ 18 % backtest lên 25 % thực tế.
Trung bình động (moving average) là giá trị trung bình của một chuỗi số liệu trong một khoảng thời gian cố định, gọi là lookback period.
Tái cân bằng (rebalancing) là quá trình đưa tỷ trọng các tài sản trong danh mục trở về mức mục tiêu đã thiết kế, sau khi biến động giá khiến chúng lệch đi. Ví dụ, một danh mục 60 % cổ phiếu – 40 % trái phiếu có thể “trôi” thành 75 % – 25 % nếu thị trường cổ phiếu tăng mạnh; việc bán bớt cổ phiếu, mua thêm trái phiếu giúp danh mục quay lại 60/40.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!