07/10/2025
636 lượt đọc
Trong hơn hai thập kỷ qua, thế giới tài chính chứng kiến sự dịch chuyển mạnh từ discretionary trading (giao dịch dựa trên cảm tính và kinh nghiệm) sang systematic trading – nơi mọi quyết định được mô hình hóa, kiểm định và lượng hóa. Nhưng giữa hàng nghìn chiến lược phức tạp được sinh ra, rất ít mô hình thực sự khai thác được dòng chảy thông tin – yếu tố mà thị trường vận hành xung quanh nó.
Một trong những nghiên cứu đáng chú ý gần đây là “An Information Factor: What Are Skilled Investors Buying and Selling?”. Nhóm tác giả chỉ ra rằng nếu ta biết những nhà đầu tư có thông tin đang làm gì, ta có thể tái tạo một nguồn alpha ổn định. Điều thú vị là: dữ liệu họ dùng đều công khai, và logic lại rất gần gũi – đủ để các nhà giao dịch Việt Nam có thể học và triển khai ở quy mô vừa hoặc nhỏ.
Chiến lược Information Trading được xây dựng trên một nguyên lý rất cơ bản nhưng cũng là cốt lõi của mọi thị trường hiệu quả: giá không phản ánh tin tức, mà phản ánh kỳ vọng của những người biết tin tức trước phần còn lại.
Nói cách khác, giá luôn là sản phẩm của kỳ vọng – và kỳ vọng được hình thành sớm nhất từ nhóm có thông tin tốt nhất (informed money).
Để hiểu dòng tiền này vận hành thế nào, nhóm nghiên cứu tập trung vào ba nhóm tác nhân có hành vi thể hiện mức độ “thông minh” vượt trội trong thị trường:
Nếu phần logic cốt lõi là tìm cách “đi theo dòng tiền thông minh”, thì phần tiếp theo chính là cách nhóm nghiên cứu biến trực giác đó thành mô hình định lượng cụ thể – một việc vốn là bản chất của tư duy quantitative trading.
Nhóm tác giả đã xây dựng một chỉ số tổng hợp gọi là Information Score, nhằm đo lường mức độ “thông tin” ẩn trong hành vi giao dịch của từng cổ phiếu. Cách làm của họ rất trực quan nhưng có sức gợi lớn:
Khi chạy mô phỏng (backtest), kết quả rất rõ ràng: nhóm top 10% cổ phiếu có Information Score cao nhất tạo ra lợi nhuận vượt trội đáng kể so với nhóm 10% thấp nhất – ngay cả sau khi trừ chi phí giao dịch và trượt giá (slippage). Điều đó chứng minh rằng, “dòng tiền thông minh” thực sự để lại dấu chân có thể đo lường được.
Điểm đặc biệt của Information Trading không nằm ở thuật toán phức tạp, mà ở cách nó đọc hiểu “dòng chảy hành vi” – điều mà thị trường Việt Nam đang thiếu nhưng lại cực kỳ cần. Thay vì đoán hướng giá bằng vài tín hiệu kỹ thuật như MA, RSI, hay Bollinger Band, mô hình này cố gắng tìm hiểu ai đang giao dịch, và họ biết điều gì. Đây là bản chất của “behavioral quant”: không nhìn thị trường như một biểu đồ giá vô tri, mà như một tập hợp những hành vi có logic.
Tại Việt Nam, đúng là ta không có đầy đủ dữ liệu để tái tạo nguyên bản mô hình này. Chúng ta không có short interest công khai, thị trường quyền chọn vẫn đang trong giai đoạn thử nghiệm, và dữ liệu giao dịch của insider dù có, nhưng không được cập nhật thường xuyên hoặc chi tiết. Tuy nhiên, nếu đi theo hướng “Việt hóa”, vẫn có thể tạo ra một phiên bản Information Factor khả thi bằng cách sử dụng những proxy hợp lý.
Ví dụ:
Khi kết hợp ba proxy này lại, ta vẫn có thể xây dựng một Information Score cho từng cổ phiếu hay nhóm ngành – phản ánh mức độ “thông tin nội hàm” của dòng tiền. Nó không hoàn hảo như mô hình Mỹ, nhưng có thể trở thành công cụ thực nghiệm hữu ích để nhận diện khi nào dòng tiền “thông minh” bắt đầu tích lũy hay thoát hàng.
Quan trọng hơn, tư duy phía sau mô hình này có thể thay đổi cách tiếp cận của giới đầu tư định lượng Việt Nam. Thay vì cố gắng đoán hướng giá bằng kỹ thuật, ta có thể học cách đọc hành vi của dòng vốn dòng tiền tổ chức, dòng margin, dòng tự doanh. Và nếu hiểu đúng, đó mới là dạng alpha bền vững nhất trong thị trường còn non trẻ như Việt Nam.
Để hiện thực hóa mô hình Information Trading trong bối cảnh Việt Nam – nơi dữ liệu chưa phong phú và cấu trúc thị trường khác biệt – cần điều chỉnh linh hoạt nhưng vẫn giữ tinh thần cốt lõi: đo lường hành vi dòng tiền thông minh (smart money).
(1) Tín hiệu Insider:
(2) Tín hiệu Short Interest (proxy):
(3) Tín hiệu Option Volume (proxy):
Sau khi có ba nhóm tín hiệu, mỗi mã cổ phiếu được xếp hạng percentile theo từng yếu tố, sau đó trung bình hóa để tạo Information Score tổng hợp – mô phỏng cách mà mô hình gốc thực hiện.
Để kiểm nghiệm tính khả thi, có thể sử dụng tập dữ liệu VN30 hoặc VN100 – nơi có thanh khoản đủ lớn và ít nhiễu.
Các thiết lập backtest cơ bản gồm:
Kết quả từ một số mô phỏng nội bộ giai đoạn 2022–2024 cho thấy:
Dù quy mô thị trường khác biệt, pattern hành vi dòng tiền thông minh ở Việt Nam khá tương đồng với Mỹ – chỉ khác ở mức độ rõ ràng và tốc độ phản ứng.
Tuy triển vọng tích cực, việc áp dụng Information Factor ở Việt Nam không đơn giản vì nhiều rào cản:
Vì vậy, Information Factor nên được xem là một thành phần bổ trợ trong hệ thống định lượng tổng hợp – kết hợp cùng momentum, volume, sentiment hoặc liquidity factor – hơn là một chiến lược độc lập.
Nói cách khác, đây không phải là “chén thánh”, mà là một lớp dữ liệu giúp hiểu rõ hơn về hành vi của smart money trong bối cảnh thị trường Việt Nam còn đang phát triển.
Ở Việt Nam, đa số mô hình định lượng hiện tại vẫn quanh quẩn ở nhóm kỹ thuật thuần túy — EMA, RSI, hay các dạng momentum cơ bản. Tuy nhiên, bước phát triển tiếp theo không nằm ở việc “thêm chỉ báo”, mà ở việc hiểu và định lượng được dòng tiền có thông tin – thứ mà thị trường thường phản ứng chậm hơn thực tế.
Một hướng đi tiềm năng là xây dựng bộ tín hiệu “Informed Flow”. Bộ này có thể bao gồm ba cấu phần chính: (1) giao dịch nội bộ (insider trading), (2) dòng vốn ETF và khối ngoại, và (3) tâm lý phái sinh (futures sentiment). Khi được chuẩn hóa và kết hợp, các tín hiệu này cho phép nhà đầu tư nhìn thấy cách dòng tiền “có hiểu biết” di chuyển trước khi giá phản ánh.
Song song, mô hình này có thể mở rộng bằng cách kết hợp với các yếu tố cổ điển như momentum hoặc định giá (valuation factor) để hình thành chiến lược đa yếu tố (multi-factor model). Cách làm này giúp chiến lược vừa giữ được tính ổn định trong xu hướng, vừa bám sát cấu trúc dòng tiền thực tế.
Một gợi ý thực nghiệm khác là thử kiểm định Information Score trên các nhóm ngành cụ thể – chẳng hạn ngân hàng, thép, hay bất động sản – để đánh giá xem “dòng tiền thông minh” có tập trung vào một số cụm ngành nhất định hay không. Đây là bước đi quan trọng để hiểu dòng chảy vốn trong bối cảnh Việt Nam, nơi sự phân hóa ngành thường rất mạnh.
Cuối cùng, việc áp dụng machine learning chỉ nên đến sau khi nhà đầu tư hiểu rõ bản chất dữ liệu. Không phải mọi thứ có thể “train” được từ giá. Với thị trường như Việt Nam – nơi dữ liệu nhiễu, không chuẩn hóa và dễ bị thao túng – thì hiểu bản chất tín hiệu vẫn là yếu tố sống còn trước khi để mô hình học thay mình.
0 / 5
Để hiểu được lý do tại sao nến Nhật (Japanese Candlestick) lại là công cụ mạnh mẽ trong giao dịch, ta cần bắt đầu từ khái niệm cơ bản. Mỗi cây nến đại diện cho 4 giá trị quan trọng trong một khoảng thời gian nhất định (tùy thuộc vào khung thời gian mà trader chọn: 1 phiên, 1 giờ, v.v.):
Khối lượng giao dịch (trading volume) là một yếu tố quan trọng không thể thiếu trong bất kỳ chiến lược giao dịch nào, đặc biệt là trong lĩnh vực quant trading. Khối lượng giao dịch giúp các nhà đầu tư đánh giá sự quan tâm và hành vi của thị trường đối với một tài sản, từ đó đưa ra quyết định chính xác về thời điểm tham gia và thoái lui. Đặc biệt tại thị trường phái sinh Việt Nam, nơi sự phát triển còn khá mới mẻ nhưng đang có tốc độ tăng trưởng mạnh mẽ, việc hiểu rõ vai trò và tác động của khối lượng giao dịch là yếu tố không thể thiếu đối với các nhà đầu tư áp dụng chiến lược quant.
Swing trading là kiểu giao dịch dựa trên việc tận dụng những nhịp dao động của thị trường, thường kéo dài vài phiên đến vài tuần. Đây không phải câu chuyện “ngồi canh từng phút từng giây”, mà là cách tiếp cận trung hạn, bám nhịp giá và nhịp dòng tiền. Khi áp dụng vào thị trường Việt Nam, swing trading lại càng phù hợp hơn, đơn giản vì VN-Index và nhóm VN30 luôn tồn tại những dao động vừa đủ lớn để trader có thể tận dụng, nhưng không quá nhiễu như các thị trường crypto hay forex.
Mô hình Markowitz, hay còn gọi là Mô hình Trung Bình - Phương Sai (Mean-Variance Model), là nền tảng của lý thuyết danh mục đầu tư hiện đại và đã được phát triển bởi Harry Markowitz vào năm 1952. Mô hình này được xem là một trong những công cụ mạnh mẽ giúp các nhà đầu tư xây dựng danh mục đầu tư tối ưu, kết hợp giữa các tài sản khác nhau sao cho tối đa hóa lợi nhuận kỳ vọng trong khi giảm thiểu rủi ro. Cốt lõi của mô hình là phân tích sự kết hợp giữa các tài sản dựa trên lợi nhuận kỳ vọng và độ biến động (rủi ro) của chúng.
Thống kê Bayes xuất phát từ một nguyên tắc rất tự nhiên nhưng lại có sức mạnh đặc biệt lớn trong các hệ thống phức tạp như thị trường tài chính: niềm tin của chúng ta về một hiện tượng không cố định, mà thay đổi khi có thêm thông tin mới. Trong bối cảnh tài chính, điều này đặc biệt quan trọng vì thị trường không có trạng thái cân bằng lâu dài; thay vào đó, nó liên tục chuyển đổi qua nhiều chế độ (regime), thường xuyên chịu tác động bởi tin tức, dòng tiền, tâm lý nhà đầu tư và các yếu tố bất ngờ khác. Định lý Bayes cho phép chúng ta mô hình hóa sự thay đổi này thông qua ba thành phần cơ bản: “prior” – niềm tin ban đầu, “likelihood” – khả năng bằng chứng xuất hiện nếu giả thuyết đúng, và “posterior” – niềm tin đã được cập nhật.
Bước ngoặt của một người làm trading không phải lúc họ học được thêm một chỉ báo mới, mà là lúc họ nhận ra: thị trường không hề “trơn tru” và ngẫu nhiên như sách vở nói. Nó có những điểm lệch, những nhịp lặp lại, những hành vi rất… con người. Và nếu mình đủ kiên nhẫn để nhìn sâu vào dữ liệu, những điểm lệch đó chính là chỗ để mình kiếm tiền một cách có kỷ luật. Đó là cách nhiều người bước từ “trade theo cảm giác” sang “quant trading”.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!