27/08/2025
531 lượt đọc
Tick-by-Tick (TBT) Data là dữ liệu cấp vi mô (micro-level), phản ánh từng sự kiện xảy ra trong sổ lệnh của thị trường. Khác với dữ liệu OHLC (Open–High–Low–Close) theo ngày hoặc phút, TBT ghi nhận chi tiết mọi hoạt động:
Điều này đồng nghĩa với việc TBT không chỉ phản ánh kết quả cuối cùng của giao dịch, mà còn cho thấy quá trình hình thành giá và động lực cung – cầu trong từng mili-giây.
Trong nghiên cứu về Market Microstructure, TBT là loại dữ liệu tối quan trọng, bởi nó cho phép nhà phân tích trả lời các câu hỏi như:
Một nghiên cứu của Easley, López de Prado và O’Hara (2012) đã chứng minh rằng việc phân tích Order Flow Imbalance từ TBT Data có thể dự báo được biến động ngắn hạn của giá. Trong thực tế, đây chính là nền tảng để nhiều quỹ định lượng (quant funds) phát triển chiến lược high-frequency trading (HFT).
TBT Data không chỉ là một tập dữ liệu “giàu chi tiết” mà còn là nhiên liệu cốt lõi cho các chiến lược giao dịch định lượng hiện đại. Một số ứng dụng tiêu biểu:
Các công ty HFT khai thác TBT để:
Tại Mỹ, các sàn như NASDAQ, CME, NYSE cung cấp gói dữ liệu TBT với độ trễ cực thấp (sub-millisecond). Việc phân tích dữ liệu này yêu cầu hạ tầng công nghệ cao: colocation, FPGA, low-latency network.
Với TBT, nhà nghiên cứu có thể đo lường Market Impact của một lệnh lớn, từ đó thiết kế chiến lược Optimal Execution (ví dụ: thuật toán VWAP, TWAP, POV). Điều này đặc biệt quan trọng với các quỹ lớn, khi họ cần vào/ra thị trường mà không làm giá biến động mạnh.
Các mô hình machine learning và deep learning sử dụng TBT để:
Một minh chứng là quỹ Two Sigma và Citadel đã đầu tư mạnh mẽ vào hạ tầng xử lý dữ liệu TBT. Nghiên cứu cho thấy với cùng một chiến lược, dữ liệu TBT có thể cải thiện lợi nhuận 15–25% so với dữ liệu OHLC thông thường.
Ví dụ minh họa:
Giả sử vào lúc 10:00:01, giá cổ phiếu XYZ đang có order book như sau:
Trong 1 giây tiếp theo, một lệnh mua chủ động 800 cổ phiếu được gửi vào và khớp toàn bộ ở mức 100.0. Lúc này:
Kết quả: Giá tăng lên 100.5 chỉ trong tích tắc. Đây chính là điều mà dữ liệu OHLC theo phút hoàn toàn không thể tiết lộ.
Ở Việt Nam, các Sở Giao dịch (HOSE, HNX, UPCoM, và đặc biệt là thị trường phái sinh tại HNX) hiện cung cấp dữ liệu giao dịch dưới dạng snapshot (theo giây, phút) nhiều hơn là TBT. Một số điểm đáng chú ý:
Tiêu chí | OHLC Data (Ngày/Phút) | Tick-by-Tick Data (Vi mô) |
Độ chi tiết | Thấp (4 giá trị/ngày hoặc phút) | Rất cao (mỗi sự kiện trong order book) |
Thông tin thanh khoản | Không rõ | Thấy toàn bộ độ sâu thị trường (DOM) |
Khả năng phát hiện thao túng | Hầu như không thể | Có thể phát hiện spoofing, layering |
Ứng dụng chính | Phân tích kỹ thuật truyền thống | Market microstructure, HFT, quant |
Khả năng dự báo ngắn hạn | Rất hạn chế | Cao, nhờ phân tích order flow imbalance |
Kết luận: Tick-by-Tick Data là nền tảng để hiểu sâu hơn về cấu trúc thị trường, phát triển chiến lược giao dịch định lượng, và tối ưu hiệu quả thanh khoản. Ở Việt Nam, dù còn hạn chế về hạ tầng và mức độ phổ cập, nhưng khi dữ liệu TBT được mở rộng, đây sẽ là chìa khóa quan trọng để nâng tầm thị trường chứng khoán và giúp các định chế tài chính tiến gần hơn tới chuẩn quốc tế trong lĩnh vực quant trading.
0 / 5
Python không chỉ là một ngôn ngữ lập trình phổ biến — trong lĩnh vực tài chính định lượng và giao dịch tự động (quant trading), nó đã trở thành công cụ chủ lực. Nhờ hàng loạt thư viện mạnh mẽ, lập trình viên và nhà đầu tư giờ có thể biến ý tưởng chiến lược thành mô hình thực thi — từ phân tích dữ liệu, backtesting tới triển khai live trading.
Một trong những quyết định tưởng chừng đơn giản nhưng lại ảnh hưởng lớn nhất đến kết quả giao dịch — là việc chọn khung thời gian (time frame). Hầu hết các trader, đặc biệt là người mới, đều bắt đầu với câu hỏi: “Tôi nên giao dịch khung nào — 1 phút, 5 phút, hay khung ngày?” Thực tế, không có “khung thời gian tốt nhất”. Thị trường không quan tâm bạn vào lệnh ở 9h30 hay nắm giữ đến tháng sau. Cái thị trường phản hồi chỉ là xác suất và hành vi giá trong khung mà bạn chọn.
Thị trường tài chính là nơi con người, tâm lý và dữ liệu va vào nhau. Mỗi chu kỳ lại tạo ra những người thắng lớn, và để lại bài học cho những người đến sau. Nếu nhìn lại hơn 100 năm lịch sử, có một nhóm nhỏ trader đã để lại dấu ấn đến mức dù bạn đang làm trading định lượng, discretionary hay macro thì triết lý của họ vẫn còn nguyên giá trị. Dưới đây là 10 trader mà bất kỳ ai nghiên cứu thị trường nghiêm túc cũng nên hiểu rõ. Không chỉ để ngưỡng mộ, mà để rút ra cách họ tư duy về rủi ro, xác suất, và tâm lý con người.
Rủi ro thị trường (market risk) là rủi ro hệ thống ảnh hưởng đồng thời đến nhiều tài sản — không thể loại bỏ hoàn toàn nhưng có thể quản trị. Bài này trình bày phân tích chuyên sâu về bản chất các loại rủi ro thị trường, phương pháp đo lường chính, rồi đi vào 5 chiến lược giảm thiểu (risk tolerance, đa dạng hoá, hedging, giám sát liên tục, và tầm nhìn dài hạn). Cuối bài có phần cài đặt kỹ thuật và khuyến nghị quản trị.
Nhiều người nghĩ rằng xây dựng một chiến lược định lượng chỉ đơn giản là kết hợp vài chỉ báo kỹ thuật, chạy backtest và chọn ra mô hình có đường equity “đẹp”. Nhưng thực tế thì khác xa — một chiến lược có thể tồn tại ngoài thị trường thật cần một quy trình rõ ràng, có kiểm định và giới hạn rủi ro ở từng bước.
Hiện nay dữ liệu giống như “dầu mỏ” của thế kỷ 21, càng có nhiều, càng mạnh. Nhờ vào công nghệ và các thuật toán hiện đại, đầu tư tài chính đang chuyển mình mạnh mẽ: không còn chỉ dựa vào linh cảm hay tin đồn, mà thay vào đó là các mô hình toán học, xác suất, và chiến lược định lượng.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!