31/08/2025
357 lượt đọc
Trong quản lý danh mục đầu tư, việc xây dựng các mô hình dự báo lợi suất và tối ưu hóa phân bổ tài sản luôn là một trong những nhiệm vụ trọng yếu nhưng cũng đầy thách thức. Thị trường tài chính vốn biến động liên tục, chịu tác động đồng thời từ nhiều yếu tố vĩ mô, vi mô và tâm lý nhà đầu tư. Chính vì vậy, một mô hình dù được thiết kế chặt chẽ đến đâu vẫn phải đối mặt với bài toán khả năng khái quát (generalisation) – tức khả năng duy trì hiệu quả khi đi từ dữ liệu lịch sử sang điều kiện thị trường trong tương lai.
Một trong những vấn đề lớn nhất trong huấn luyện mô hình tài chính là overfitting. Overfitting xảy ra khi mô hình “ghi nhớ” quá kỹ các đặc điểm riêng của dữ liệu lịch sử, dẫn đến việc dự báo trong giai đoạn mới trở nên sai lệch. Có thể hình dung, một mô hình bị overfit giống như một học sinh chỉ học thuộc đáp án cũ mà không nắm được bản chất của bài toán, nên khi gặp đề thi mới, kết quả trở nên kém hiệu quả. Trong quản lý danh mục, điều này dẫn đến những rủi ro lớn: chiến lược từng hoạt động tốt trong giai đoạn backtest có thể hoàn toàn thất bại trong thực tế.
Để giải quyết, giới nghiên cứu và thực hành tài chính định lượng đã phát triển nhiều kỹ thuật kiểm định và tối ưu hóa chiến lược. Trong đó, một phương pháp được đánh giá là mang tính thực tế cao và ngày càng được sử dụng rộng rãi là Walk-Forward Optimisation (WFO).
Walk-Forward Optimisation (WFO) là một kỹ thuật kiểm định và tối ưu hóa mô hình giao dịch/danh mục theo cách mô phỏng sát nhất với “dòng thời gian thực”. Thay vì huấn luyện toàn bộ mô hình một lần trên dữ liệu quá khứ rồi kiểm tra trên một tập out-of-sample duy nhất (như cách truyền thống), WFO chia dữ liệu thành nhiều giai đoạn và thực hiện quá trình:
Điểm mạnh của WFO là giúp mô hình thích ứng liên tục với môi trường thị trường thay đổi. Thị trường chứng khoán, đặc biệt là ở Việt Nam, có tính chất chu kỳ rõ rệt (ví dụ: sóng đầu cơ bất động sản, sóng ngành ngân hàng, tác động mùa vụ kết quả kinh doanh quý) và thường xuyên chịu ảnh hưởng mạnh từ tin tức, chính sách, hoặc biến động quốc tế. Do đó, một mô hình nếu chỉ dựa trên một giai đoạn lịch sử duy nhất có thể nhanh chóng “lỗi thời” khi bối cảnh thay đổi.
WFO đóng vai trò như một cơ chế “cập nhật liên tục”, vừa kiểm định khả năng khái quát của mô hình, vừa cho phép tái huấn luyện để phản ánh điều kiện thị trường hiện tại. Với các mô hình học máy và đặc biệt là mạng LSTM (Long Short-Term Memory), WFO giúp đảm bảo rằng trọng số mô hình không bị “cố định” ở một điều kiện cũ, mà được điều chỉnh dần dần qua từng giai đoạn.
Nói cách khác, WFO là cầu nối giữa lý thuyết và thực tế: nó mô phỏng đúng cách mà một chiến lược sẽ được vận hành trong thị trường thật – luôn thay đổi, luôn cần thích nghi, và không bao giờ chắc chắn chỉ dựa vào quá khứ.
Walk-Forward Optimisation không chỉ là một kỹ thuật kiểm chứng mô hình, mà còn là một quy trình mô phỏng liên tục cách một nhà quản lý quỹ phải ra quyết định trong thực tế. Thay vì “chạy mô hình một lần cho cả lịch sử”, WFO đặt mô hình vào trạng thái thường xuyên được kiểm nghiệm và tái thích nghi, phản ánh sát thực tế việc thị trường luôn biến động và không bao giờ giữ nguyên các đặc tính thống kê.
Một quy trình WFO chuẩn thường bao gồm các bước sau:
Bước 1: Tối ưu ban đầu (Initial Optimisation)
Bước 2: Giai đoạn In-Sample
Bước 3: Giai đoạn Out-of-Sample
Bước 4: Tái tối ưu (Re-optimisation)
Bước 5: Lặp lại liên tục (Walk-Forward Loop)
Ví dụ: hiệu ứng công bố báo cáo tài chính quý, chính sách tín dụng từ NHNN, biến động tỷ giá, và xu hướng giải ngân vốn đầu tư công.
Giả sử dữ liệu gồm 20 ngày, ta chọn:
Quy trình:
Mỗi vòng lặp:
Mặc dù WFO giúp mô hình bớt overfit và sát thực tế hơn, một số điểm cần lưu ý:
Trong thực tế, các quỹ đầu tư và công ty chứng khoán ở Việt Nam có thể áp dụng WFO để:
Walk-Forward Optimisation không chỉ là một công cụ kiểm định chiến lược mà còn là cách tiếp cận giúp mô hình liên tục học và thích nghi với điều kiện thị trường thay đổi. Khi kết hợp với các mô hình AI như LSTM, đây là một phương pháp tiềm năng để quản lý danh mục tại Việt Nam, nơi thị trường còn non trẻ nhưng biến động nhanh và nhạy cảm với thông tin.
Việc triển khai WFO đòi hỏi kỹ năng dữ liệu, hiểu biết thị trường và khả năng quản trị rủi ro. Nhưng với những nhà quản lý danh mục và nhà đầu tư cá nhân quan tâm đến phân tích định lượng, đây chắc chắn là một hướng đi đáng thử nghiệm trong bối cảnh thị trường ngày càng cạnh tranh.
0 / 5
Trong giao dịch theo hệ thống, khoảnh khắc khó chịu nhất không phải là một phiên thua lỗ lớn, mà là một chuỗi thua đều đặn kéo dài. Ở thị trường Việt Nam, đặc biệt với phái sinh VN30F1M, sáu tháng liên tục không hiệu quả là đủ để khiến phần lớn trader bắt đầu nghi ngờ mọi thứ mình đang làm.
Một trong những giả định ngầm nhưng có ảnh hưởng lớn nhất đến cách nhà đầu tư tiếp cận thị trường là việc coi thị trường tài chính như một cỗ máy. Theo cách nhìn này, nếu hiểu đủ rõ các biến số đầu vào, nếu xây dựng được mô hình đủ tinh vi, ta có thể dự đoán chính xác đầu ra – giá sẽ đi đâu, khi nào, và bao xa.
Mô hình head and shoulders (vai đầu vai) là một trong những mô hình phân tích kỹ thuật cơ bản nhưng rất mạnh mẽ trong việc dự đoán xu hướng thị trường. Mô hình này rất phổ biến trong các giao dịch chứng khoán cơ sở và phái sinh, đặc biệt là tại các thị trường có độ biến động cao như Việt Nam. Được coi là mô hình đảo chiều, head and shoulders thường xuất hiện sau một xu hướng tăng, báo hiệu rằng giá có thể đảo chiều giảm, hoặc có thể xuất hiện ngược lại sau một xu hướng giảm, báo hiệu sự đảo chiều thành tăng.
Khi trader mới bước vào thị trường, đặc biệt là phái sinh VN30, một trong những câu chuyện được kể nhiều nhất là: “Có market maker kéo giá quét stop”. Sau vài lần bị hit stop rất gọn, đúng đỉnh đúng đáy, cảm giác đó là hoàn toàn thật. Nhưng nếu dừng lại ở mức “có ai đó săn mình”, thì rất dễ đi lạc hướng.
Nếu phải mô tả thị trường tài chính giai đoạn 2026 bằng một cụm từ, thì đó là: khó định hình nhưng không hề yên ắng. Sau nhiều năm thị trường bị dẫn dắt bởi những câu chuyện lớn – từ COVID, kích thích tiền tệ, lạm phát cho tới AI – nhà đầu tư dần nhận ra một vấn đề: những narrative này không còn vận hành theo đường thẳng. Lãi suất không tăng mạnh nữa nhưng cũng không quay về mức cực thấp. Lạm phát hạ nhiệt nhưng vẫn dai dẳng. AI tiếp tục thay đổi nền kinh tế, nhưng lợi nhuận không còn phân bổ đồng đều như giai đoạn đầu. Trong một môi trường như vậy, đầu tư dựa trên một kịch bản duy nhất trở nên cực kỳ mong manh.
Với rất nhiều người bước vào trading định lượng, data mining gần như là phản xạ tự nhiên đầu tiên. Bạn có dữ liệu giá, có indicator, có máy tính đủ mạnh, vậy thì việc “quét” hàng trăm, hàng nghìn tổ hợp tham số để tìm ra chiến lược có lợi nhuận nghe rất hợp lý. Cảm giác này đặc biệt mạnh với những ai có nền tảng kỹ thuật: code chạy được, backtest ra equity curve đẹp, drawdown thấp, Sharpe cao – mọi thứ trông rất khoa học và thuyết phục.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!