[P1] Tổng hợp các phương pháp đánh giá rủi ro và hiệu suất trong đầu tư

19/04/2024

11,893 lượt đọc

Quản lý rủi ro trong tài chính là quá trình nhận diện, đánh giá và điều phối nguồn lực để kiểm soát rủi ro và giảm thiểu tác động của các biến cố bất ngờ. Đây là yếu tố then chốt để đảm bảo các chiến lược đầu tư an toàn và bảo vệ doanh nghiệp cũng như các bên liên quan khỏi rủi ro tài chính. Trong loạt bài này, QM Capital sẽ giới thiệu và phân tích chi tiết 5 phương pháp đánh giá rủi ro hiệu quả bằng Python, bao gồm Tỷ lệ Sharpe, Tỷ lệ Sortino, Tỷ lệ Omega, Tỷ lệ Calmar và Tỷ lệ Sụt giảm tối đa. Những công cụ này là thiết yếu cho nhà đầu tư, nhà phân tích tài chính và nhà khoa học dữ liệu để nâng cao hiệu quả trong quản lý rủi ro và đầu tư.

1. Tỷ lệ Sharpe

1.1. Khái niệm

Tỷ lệ Sharpe là một thước đo xem lợi nhuận thu được là bao nhiêu trên một đơn vị rủi ro khi đầu tư vào một tài sản hay đầu tư theo một chiến lược kinh doanh.

Tỷ lệ Sharpe được phát triển bởi William F. Sharpe và được sử dụng để giúp các nhà đầu tư hiểu được lợi tức của khoản đầu tư so với rủi ro của nó. Tỷ lệ này là lợi nhuận trung bình kiếm được vượt quá lợi nhuận phi rủi ro trên mỗi đơn vị rủi ro.   

Cách thức hoạt động của Tỷ lệ Sharpe: 

Nhà đầu tư thường xuyên đối mặt với hai mục tiêu mâu thuẫn: một là tối đa hóa lợi nhuận từ các khoản đầu tư, hai là giảm thiểu rủi ro, tức là giảm thiểu khả năng thua lỗ.

Tỷ lệ Sharpe được sử dụng để cung cấp cho nhà đầu tư một chỉ số đánh giá hiệu quả đầu tư đã điều chỉnh theo rủi ro. Tỷ lệ Ratio có thể áp dụng để phân tích hiệu suất quá khứ hoặc kỳ vọng hiệu suất tương lai, nhưng trong cả hai trường hợp, tỷ lệ tài chính quan trọng này giúp nhà đầu tư hiểu liệu lợi nhuận có đến từ quyết định thông minh hay chỉ là chấp nhận quá nhiều rủi ro. Nếu là trường hợp sau, nhà đầu tư có thể sẽ chịu tổn thất lớn hơn mức họ có thể chấp nhận nếu thị trường biến động bất lợi.

Tỷ lệ Sharpe được tính bằng cách lấy lợi nhuận vượt trội của một tài sản hoặc danh mục đầu tư trong một khoảng thời gian xác định, sau đó chia cho độ lệch chuẩn của danh mục đó, đây là thước đo của mức độ biến động. Độ lệch chuẩn càng cao thì mức độ rủi ro càng lớn, và ngược lại, tỷ lệ Sharpe càng cao cho thấy mức độ hiệu quả rủi ro càng tốt

Công thức tính: 

Tỉ lệ Sharpe = (Rp – Rf)/ σp 

Trong đó: 

Rp là tỷ suất lợi nhuận của danh mục đầu tư 

Rf là tỷ suất lợi nhuận phi rủi ro 

σp là độ lệch chuẩn của tỷ suất lợi nhuận vượt quá của danh mục

1.2. Đặc điểm

Tỷ lệ Sharpe là công cụ đo lường hiệu quả lợi nhuận điều chỉnh theo rủi ro được sử dụng phổ biến trong ngành tài chính. Theo Lý thuyết Danh mục Đầu tư hiện đại (Modern Portfolio Theory - MPT), việc bổ sung các tài sản có mối tương quan thấp vào một danh mục đầu tư đa dạng có thể giúp giảm thiểu rủi ro mà không làm giảm lợi nhuận kỳ vọng.

Giả định rằng rủi ro tương đương với mức độ biến động của lợi nhuận, một danh mục đầu tư (DMĐT) đa dạng hóa cao sẽ có Tỷ lệ Sharpe cao hơn so với những danh mục ít đa dạng hơn.

Tỷ lệ Sharpe không chỉ được áp dụng để phân tích hiệu suất quá khứ của danh mục đầu tư (Ex-Post), mà còn có thể sử dụng để ước tính hiệu suất tương lai thông qua Tỷ lệ Sharpe dự kiến (Ex-Ante). Điều này được thực hiện bằng cách sử dụng lợi nhuận thực tế đã đạt được và so sánh với mức lợi nhuận không rủi ro để xem xét hiệu quả đầu tư dưới góc độ điều chỉnh rủi ro.

Tỷ lệ Sharpe cho phép nhà đầu tư: 

  1. So sánh tỷ lệ rủi ro/lợi nhuận của các tùy chọn đầu tư khác nhau. 
  2. Đánh giá hiệu quả của các chiến lược trong một lựa chọn đầu tư duy nhất (tỷ lệ rủi ro/lợi nhuận của các danh mục đầu tư, advisor khác nhau, v.v.). 
  3. Chọn một chiến lược hấp dẫn hơn về mặt giảm thiểu rủi ro với cùng một mức lợi nhuận.

1.3. Ví dụ về tỷ lệ Sharpe

Xem xét hai danh mục đầu tư: Danh mục A dự kiến sẽ mang lại lợi nhuận 14% trong vòng 12 tháng tới, trong khi Danh mục B dự kiến sẽ mang lại lợi nhuận 11% trong cùng kỳ. 

Nếu không xét đến rủi ro, rõ ràng Danh mục A là lựa chọn ưu việt hơn dựa trên mức lợi nhuận đơn thuần.

Nhưng liệu rủi ro. Đây là lúc mà tỷ lệ Sharpe cung cấp một cái nhìn toàn diện hơn về khoản đầu tư. Trong ví dụ này, Danh mục A có độ lệch chuẩn 8% (rủi ro cao hơn) và Danh mục B có độ lệch chuẩn 4% (rủi ro thấp hơn). Lãi suất không rủi ro là 3%, là lợi tức của trái phiếu chính phủ Mỹ có kỳ hạn trung bình.

Tỷ lệ Sharpe cho mỗi danh mục: 

Danh mục A: (14 - 3) / 8 = Tỷ lệ Sharpe là 1.38

Danh mục B: (11 - 3) / 4 = Tỷ lệ Sharpe là 2

Với mức độ biến động cao hơn được tính vào Danh mục A, tỷ lệ Sharpe của nó thấp hơn so với của Danh mục B. Điều này biết rằng với tỷ lệ Sharpe là 2, Danh mục B mang lại lợi nhuận tốt hơn trên cơ sở điều chỉnh rủi ro.

=> Một tỷ lệ Sharpe nằm giữa 1 và 2 được coi là tốt. Tỷ lệ từ 2 đến 3 là rất tốt, và bất kỳ kết quả nào cao hơn 3 đều được đánh giá là xuất sắc.

1.4. Phân tích tỷ lệ Sharpe hàng năm của Apple bằng Python

import pandas as pd
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

tickerSymbol = ‘AAPL’
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2012-1-1')
tickerDf['returns'] = tickerDf['Close'].pct_change()

# Annualized Sharpe Ratio
rolling_sharpe = np.sqrt(252) * tickerDf['returns'].rolling(252).mean() / tickerDf['returns'].rolling(252).std()

plt.figure(figsize=(15,7))
ax1 = plt.gca()
ax1.plot(rolling_sharpe, label='Rolling Sharpe Ratio', linewidth=1.5)
ax1.axhline(y=1, color='red', linestyle='--', label='Good Sharpe Ratio Threshold: 1')
ax1.set_title('Rolling 1-Year Sharpe Ratio with Stock Price', fontsize=16)
ax1.set_ylabel('Sharpe Ratio', fontsize=14)
ax1.legend()

ax2 = ax1.twinx()
ax2.plot(tickerDf['Close'], color='grey', alpha=0.3, label='Stock Price')
ax2.set_ylabel('Stock Price', fontsize=14)

plt.tight_layout()
plt.show()

Ví dụ Phân tích tỷ lệ Sharpe hàng năm của Apple bằng Python


2. Tỷ lệ Sortino

2.1. Khái niệm

Tỷ lệ Sortino là một biến thể của Tỷ lệ Sharpe, được sử dụng để đo lợi nhuận điều chỉnh theo rủi ro của danh mục đầu tư bằng cách so sánh hiệu suất với độ lệch chuẩn rủi ro đi xuống, thay vì độ lệch chuẩn tổng thể của lợi nhuận danh mục

Công thức tính Tỷ lệ Sortino là:

Tỷ lệ Sortino = (Rp – rf)/σd

Trong đó:

Rp là lợi nhuận danh mục đầu tư thực tế hoặc dự kiến

rf là lãi suất phi rủi ro

σd là độ lệch chuẩn của rủi ro thua lỗ

Tỷ lệ Sortino là một công cụ đánh giá hiệu suất đầu tư rất có giá trị đối với nhà đầu tư, nhà phân tích và người quản lý danh mục đầu tư. Tỷ lệ này chỉ tính đến độ lệch chuẩn của các lợi nhuận âm, tức là chỉ xem xét rủi ro đi xuống, làm cho nó trở thành một công cụ đo lường rủi ro một cách chính xác hơn so với các phương pháp truyền thống như tỷ lệ Sharpe, vốn xem xét biến động tổng thể. Điều này rất quan trọng vì biến động lợi nhuận tích cực là có lợi cho nhà đầu tư và không nên được coi là một yếu tố rủi ro.

2.2. Ví dụ về tỷ lệ Sortino

Cũng giống như tỷ lệ Sharpe, giá trị tỷ lệ Sortino càng cao càng tốt. Khi xem xét hai khoản đầu tư tương tự nhau, một nhà đầu tư hợp lý sẽ thích một khoản đầu tư có tỷ lệ Sortino cao hơn bởi vì điều đó có nghĩa là khoản đầu tư đang kiếm được nhiều tiền lãi hơn trên mỗi đơn vị rủi ro xấu mà nó phải chịu.

Ví dụ: Giả sử Quỹ tương hỗ X có tỷ lệ hoàn vốn hàng năm là 12% và độ lệch rủi ro thua lỗ là 10%. Quỹ tương hỗ Z có lợi nhuận hàng năm là 10% và độ lệch rủi ro thua lỗ là 7%. Tỷ lệ lãi suất phi rủi ro là 2.5%. Tỷ lệ Sortino cho cả hai quỹ sẽ được tính như sau:

Tỷ lệ Sortino của Quỹ tương hỗ X = (12% - 2.5%)/ 10% = 0.95

Tỷ lệ Sortino của Quỹ tương hỗ Z = (10% - 2.5%)/ 7% = 1.07

Mặc dù Quỹ tương hỗ X có Tỷ suất lợi nhuận cao hơn 2%, nhưng nó không kiếm được lợi nhuận đó hiệu quả như Quỹ tương hỗ Z, chứng minh bởi các độ lệch rủi ro thua lỗ của họ. Dựa trên kết quả này, Quỹ tương hỗ Z là lựa chọn đầu tư tốt hơn.

Mặc dù tỷ lệ lợi nhuận phi rủi ro được sử dụng phổ biến hơn, các nhà đầu tư vẫn có thể sử dụng lợi nhuận kỳ vọng trong tính toán. Để giữ cho công thức được chuẩn xác, nhà đầu tư nên nhất quán sử dụng một loại lợi nhuận.

2.3. Phân tích tỷ lệ Sortino hàng năm của Invesco QQQ Trust (QQQ) bằng Python

import pandas as pd
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

# Fetch Data
tickerSymbol = "QQQ"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2010-1-1')
tickerDf['returns'] = tickerDf['Close'].pct_change()
MAR = 0 # Minimum Acceptable Return

# Sortino Ratio calculation
sortino_ratio = tickerDf['returns'].rolling(252).apply(lambda x: np.mean(x - MAR) / np.sqrt(np.mean(np.minimum(0, x - MAR)**2)))

threshold = sortino_ratio.mean()

# Aesthetics
plt.figure(figsize=(15, 7))
plt.style.use('seaborn-darkgrid')
palette = plt.get_cmap('Set1')

# Plot Sortino Ratio
ax1 = plt.gca()
ax1.plot(sortino_ratio.index, sortino_ratio, color=palette(0), linewidth=1.5, label='Sortino Ratio')

# Smoothened Sortino Ratio with a moving average
ax1.plot(sortino_ratio.index, sortino_ratio.rolling(window=252).mean(), color='orange', linestyle='--', label='1-Year MA')

ax1.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold (Mean: {threshold:.2f})')

# Aesthetics for Sortino Ratio
ax1.set_ylabel('Sortino Ratio', fontsize=14, color=palette(0))
ax1.legend(loc='upper left')
ax1.set_title(f'Rolling 1-Year Sortino Ratio with Stock Price (MAR: {MAR*100}%)', fontsize=16)

# Stock Price Plot on secondary y-axis
ax2 = ax1.twinx()
ax2.plot(tickerDf.index, tickerDf['Close'], color=palette(1), alpha=0.4, label='Stock Price')
ax2.set_ylabel('Stock Price', fontsize=14, color=palette(1))

plt.tight_layout()
plt.show()

Ví dụ Phân tích tỷ lệ Sortino hàng năm của Visa bằng Python

Tỷ lệ Sharpe và Tỷ lệ Sortino đã trở nên thiết yếu để tối ưu hóa chiến lược đầu tư. Các phương pháp này không chỉ giúp các nhà đầu tư đánh giá hiệu quả rủi ro/lợi nhuận của từng khoản đầu tư một cách khoa học mà còn cung cấp những cái nhìn sâu sắc về khả năng tổng quát của các chiến lược đầu tư trong các điều kiện của thị trường. Bằng việc hiểu rõ và áp dụng linh hoạt những chỉ số này, nhà đầu tư có thể đưa ra các quyết định thông minh, giảm thiểu rủi ro và tăng cường tiềm năng sinh lời cho danh mục đầu tư của mình trong dài hạn.

Hẹn mọi người trong phần 2 về các tỷ lệ Calmar, Omega và Max Drawdown!


Link Google Colab: Tổng hợp các phương pháp đánh giá rủi ro và hiệu suất trong đầu tư

Chia sẻ bài viết

Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Relative Strength Index (RSI): vì sao chỉ báo quen thuộc này thường bị hiểu sai?
28/01/2026
51 lượt đọc

Relative Strength Index (RSI): vì sao chỉ báo quen thuộc này thường bị hiểu sai? C

Relative Strength Index (RSI) là một trong những chỉ báo kỹ thuật phổ biến nhất trên thị trường tài chính. Với rất nhiều nhà đầu tư, RSI gần như đồng nghĩa với một quy tắc đơn giản: RSI trên 70 là quá mua, dưới 30 là quá bán. Từ đó, RSI được sử dụng như một công cụ bắt đỉnh đáy trực quan, nhanh gọn và “có vẻ hợp lý”.

Vì sao thị trường không tuân theo phân phối chuẩn?
27/01/2026
51 lượt đọc

Vì sao thị trường không tuân theo phân phối chuẩn? C

Trong nhiều thập kỷ, phần lớn lý thuyết tài chính hiện đại được xây dựng trên một giả định tưởng như hiển nhiên: lợi suất tài sản tuân theo phân phối chuẩn. Giả định này ăn sâu đến mức trở thành “ngôn ngữ mặc định” của ngành tài chính – từ mô hình định giá, đo lường rủi ro cho tới cách chúng ta nói về xác suất.

Vì sao nhiều chiến lược nước ngoài áp dụng vào Việt Nam lại không hiệu quả?
26/01/2026
42 lượt đọc

Vì sao nhiều chiến lược nước ngoài áp dụng vào Việt Nam lại không hiệu quả? C

Một giả định ngầm mà nhiều nhà đầu tư Việt Nam mang theo khi tiếp cận các chiến lược nước ngoài là: nếu một chiến lược đã hoạt động tốt ở Mỹ, châu Âu hay Nhật Bản, thì khi đưa về Việt Nam, nó cũng sẽ hoạt động – chỉ cần “điều chỉnh một chút”.

Một chiến lược thua 6 tháng liên tục có còn đáng tin?
21/01/2026
99 lượt đọc

Một chiến lược thua 6 tháng liên tục có còn đáng tin? C

Trong giao dịch theo hệ thống, khoảnh khắc khó chịu nhất không phải là một phiên thua lỗ lớn, mà là một chuỗi thua đều đặn kéo dài. Ở thị trường Việt Nam, đặc biệt với phái sinh VN30F1M, sáu tháng liên tục không hiệu quả là đủ để khiến phần lớn trader bắt đầu nghi ngờ mọi thứ mình đang làm.

Thị trường tài chính giống thời tiết hơn là cỗ máy
21/01/2026
120 lượt đọc

Thị trường tài chính giống thời tiết hơn là cỗ máy C

Một trong những giả định ngầm nhưng có ảnh hưởng lớn nhất đến cách nhà đầu tư tiếp cận thị trường là việc coi thị trường tài chính như một cỗ máy. Theo cách nhìn này, nếu hiểu đủ rõ các biến số đầu vào, nếu xây dựng được mô hình đủ tinh vi, ta có thể dự đoán chính xác đầu ra – giá sẽ đi đâu, khi nào, và bao xa.

Đảo chiều xu hướng thị trường với mô hình Head and Shoulders
19/01/2026
126 lượt đọc

Đảo chiều xu hướng thị trường với mô hình Head and Shoulders C

Mô hình head and shoulders (vai đầu vai) là một trong những mô hình phân tích kỹ thuật cơ bản nhưng rất mạnh mẽ trong việc dự đoán xu hướng thị trường. Mô hình này rất phổ biến trong các giao dịch chứng khoán cơ sở và phái sinh, đặc biệt là tại các thị trường có độ biến động cao như Việt Nam. Được coi là mô hình đảo chiều, head and shoulders thường xuất hiện sau một xu hướng tăng, báo hiệu rằng giá có thể đảo chiều giảm, hoặc có thể xuất hiện ngược lại sau một xu hướng giảm, báo hiệu sự đảo chiều thành tăng.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!