Ở thị trường Việt Nam, khái niệm đa dạng hóa thường bị hiểu rất hẹp và đôi khi sai bản chất. Phần lớn nhà đầu tư cá nhân cho rằng chỉ cần nắm giữ 10–20 cổ phiếu khác nhau, thuộc nhiều ngành khác nhau, thì danh mục đã được đa dạng hóa. Trong giai đoạn thị trường đi lên, cách làm này có vẻ hợp lý vì hầu như cổ phiếu nào cũng tăng, và sự khác biệt giữa các mã không quá quan trọng. Nhưng khi thị trường bước vào pha điều chỉnh mạnh, nhà đầu tư mới nhận ra rằng danh mục “đa dạng” của mình thực chất lại phản ứng gần như giống hệt chỉ số chung. Điều này dẫn đến một kết luận phổ biến nhưng nguy hiểm: đa dạng hóa ở Việt Nam không hiệu quả.
Trong algo trading, có một nghịch lý mà gần như ai cũng gặp ít nhất một lần: bạn có một ý tưởng nghe rất logic, backtest không quá đẹp nhưng đủ ổn để tin là có edge, thậm chí forward test vài tháng đầu còn kiếm được tiền. Nhưng rồi đến một lúc nào đó, chiến lược bắt đầu đi chệch khỏi kỳ vọng. Lỗ không phải kiểu “sai logic”, mà là lỗ dai, lỗ đều, khiến bạn nghi ngờ chính khả năng đánh giá hệ thống của mình. Khi nhìn lại, rất nhiều người mới nhận ra: vấn đề không nằm ở việc chiến lược có edge hay không, mà nằm ở việc mình đã tin vào kết quả test sai chỗ.
Bear market không đáng sợ vì nó xảy ra, mà vì đa số nhà đầu tư không hiểu mình đang đối mặt với loại bear market nào. Khi không phân loại được bản chất của cú giảm, mọi phản ứng phía sau – từ bán tháo, mua bắt đáy, đến thay đổi chiến lược – đều dễ đi chệch hướng.
Trong phần lớn trường hợp, stop loss không đo lường risk, mà chỉ phản ánh đường đi ngắn hạn của giá (price path). Risk, về mặt định lượng, là xác suất và mức độ của các kết cục bất lợi trong tương lai. Còn stop loss chỉ nói rằng: giá đã đi ngược lại vị thế của bạn một đoạn nào đó. Hai khái niệm này không đồng nhất, nhưng trong thực tế trading, chúng thường bị đánh đồng.
Buy & Hold, xét cho cùng, là một chiến lược dựa trên equity risk premium: nhà đầu tư chấp nhận biến động và drawdown để đổi lấy kỳ vọng lợi nhuận vượt trội so với tài sản phi rủi ro trong dài hạn. Khi bạn Buy & Hold chỉ số hay cổ phiếu, bạn không chỉ mua tài sản, mà mua toàn bộ phân phối rủi ro của thị trường.
Khi mới tìm hiểu algo trading, rất dễ bị cuốn vào công cụ, platform, indicator hay tối ưu tham số. Nhưng đọc các “Best Of Trading Lists” của Kevin Davey, điểm nổi bật nhất không phải là nên dùng cái gì, mà là nên nghĩ như thế nào. Những danh sách này thực chất ghép lại thành một lộ trình: từ cách nhìn về trading, cách xây strategy, cho tới cách sống sót khi hệ thống không hoạt động như mong đợi.
Nếu nhìn vào các con số thống kê, việc nhiều người tìm đến bot trading là điều hoàn toàn dễ hiểu. Phần lớn trader cá nhân không beat được thị trường trong dài hạn. Day trading thì tỷ lệ tồn tại còn thấp hơn nữa. Khi đã thử đủ cách mà kết quả vẫn không cải thiện, ý tưởng “để máy làm thay mình” trở nên rất hấp dẫn.
Momentum trading thường bị hiểu sai ngay từ tên gọi. Nhiều người nghĩ momentum đơn giản là “giá tăng thì mua, giá giảm thì bán”, hay một dạng technical analysis nông. Cách hiểu này bỏ qua phần quan trọng nhất: momentum là một giả thuyết về cách thị trường phản ứng với thông tin theo thời gian, chứ không phải một công thức giao dịch cụ thể.
Khi nói đến “predict the upcoming trends”, đa số mọi người hình dung ngay đến việc gọi tên một xu hướng sắp tới: công nghệ nào sẽ bùng nổ, thị trường nào sẽ tăng trưởng, hành vi nào sẽ trở nên phổ biến. Nhưng cách hiểu này ngay từ đầu đã đặt kỳ vọng sai. Trong thực tế, không ai thực sự “nhìn thấy” tương lai, kể cả những tổ chức có dữ liệu lớn và đội ngũ phân tích mạnh. Thứ họ làm tốt hơn số đông không phải là dự đoán chính xác, mà là hiểu rõ cấu trúc của hiện tại và các lực đang tác động lên nó.
Mình từng nghĩ câu hỏi này khá đơn giản. Nhưng càng làm lâu, mình càng thấy câu trả lời thay đổi theo từng giai đoạn, thậm chí theo từng drawdown. Có lúc mình tin chắc là tìm được alpha là khó nhất, có lúc lại thấy rủi ro và execution mới là thứ giết chết mọi thứ, và cũng có giai đoạn mình nhận ra vấn đề lớn nhất lại nằm ở chính cách mình chấp nhận (hay không chấp nhận) sự không chắc chắn của market.
Mình vừa “tìm hiểu kỹ” (đúng hơn là soi mục lục + mô tả chính thức của NXB và bản xem trước) cuốn “Advanced Portfolio Management – A Quant’s Guide for Fundamental Investors” của Giuseppe A. Paleologo. Cảm giác đầu tiên là: đây là kiểu sách rất dễ khiến người đọc bị trúng ngay chỗ đau vì nó không hô khẩu hiệu “tối ưu danh mục” theo kiểu giáo khoa, mà đặt thẳng vấn đề: bạn có ý tưởng đầu tư (edge) rồi đó, nhưng biến nó thành PnL bền vững mới là game thật. Sách được đóng khung rõ ràng cho fundamental PM/analyst muốn dùng “quant” như một bộ khung kỷ luật (risk + sizing + hedging + trading), chứ không phải biến mình thành một nhà toán học ngồi solve tối ưu cho đẹp.
Quỹ đầu tư định lượng (quant funds) đã trở thành một phần không thể thiếu trong các thị trường tài chính hiện đại. Với sự phát triển mạnh mẽ của công nghệ và dữ liệu, các quỹ này sử dụng những mô hình toán học và thuật toán để xây dựng chiến lược giao dịch. Tuy nhiên, một trong những điểm đặc biệt của các quỹ định lượng là việc họ áp dụng rất nhiều chiến lược giao dịch khác nhau, từ theo xu hướng (trend-following) cho đến chiến lược phản xu hướng (countertrend). Mỗi loại quỹ lại có một cách tiếp cận riêng và được xây dựng trên những nguyên lý khác nhau, và chúng hoạt động tốt nhất trong những điều kiện thị trường nhất định.
Trước những năm 1970, ngành tài chính hoạt động trong một khuôn khổ bảo thủ và bị kiểm soát chặt chẽ. Các sản phẩm tài chính chủ yếu là các công cụ truyền thống như ngân hàng, cổ phiếu, và trái phiếu, và tất cả đều có lãi suất và tỷ giá cố định. Thị trường chứng khoán thời đó không có nhiều cơ hội để sáng tạo hay phát triển các chiến lược đầu tư phức tạp, vì sự biến động của giá cổ phiếu được cho là gần như ngẫu nhiên và không thể dự đoán được. Chính vì vậy, ngành tài chính không thu hút nhiều sự chú ý về mặt trí tuệ, và các học giả thời bấy giờ cũng cho rằng giá cổ phiếu thay đổi một cách ngẫu nhiên, không có quy luật rõ ràng để nghiên cứu.
Việc phát triển một chiến lược giao dịch mạnh mẽ trong môi trường tài chính không chỉ đơn giản là chọn đúng tài sản hay đúng công cụ. Một yếu tố quan trọng không thể thiếu trong việc đánh giá và kiểm tra các chiến lược giao dịch chính là hệ thống backtesting (kiểm thử chiến lược). Trong bài viết này, chúng ta sẽ cùng tìm hiểu liệu có nên tự xây dựng một hệ thống backtester cho mình hay không, đặc biệt khi có rất nhiều công cụ sẵn có hiện nay, từ những phần mềm mở đến các giải pháp chuyên nghiệp. Việc tự xây dựng backtester không chỉ là một công cụ để kiểm tra chiến lược, mà còn là một cách để bạn hiểu sâu hơn về những yếu tố ẩn giấu trong các mô hình giao dịch của mình.
Giao dịch định lượng (Algorithmic Trading) thường được xem là một lĩnh vực khá phức tạp đối với người mới bắt đầu. Với sự kết hợp giữa toán học, thống kê và công nghệ, nó có thể khiến không ít người cảm thấy e ngại khi mới tiếp cận. Tuy nhiên, như câu nói nổi tiếng: "Đừng bao giờ sợ bắt đầu lại. Những khởi đầu nhỏ có thể dẫn tới những thành công lớn". Và trong thế giới giao dịch định lượng, điều này hoàn toàn đúng. Với sự học hỏi và thực hành không ngừng, bạn sẽ dần làm chủ được lĩnh vực này.
Trong tài chính, chiến lược mean reversion (quay lại giá trị trung bình) là một trong những chiến lược giao dịch lâu đời và phổ biến nhất, đặc biệt trong các thị trường có biến động mạnh. Cốt lõi của chiến lược này là giả thuyết rằng sau khi giá của một tài sản có những biến động mạnh (tăng hoặc giảm), giá sẽ có xu hướng quay lại mức giá trung bình trong dài hạn. Tuy nhiên, chiến lược này không chỉ dựa vào các phân tích kỹ thuật hay lý thuyết giá trị tài sản mà còn liên quan mật thiết đến việc cung cấp thanh khoản – một yếu tố quan trọng trong việc xác định sự biến động của giá cả và tạo ra cơ hội lợi nhuận.
Khi người ta nói đến may mắn, đó thường là cách chúng ta giải thích những kết quả mà chúng ta không thể lý giải một cách đơn giản. Chúng ta chấp nhận nó như một sự ngẫu nhiên tuyệt vời mà cuộc sống mang lại – như trúng xổ số, thắng lớn trong một cuộc chơi, hay bỗng nhiên nhận được cơ hội lớn trong công việc. Nhưng nếu nhìn nhận sâu hơn, chúng ta sẽ thấy rằng may mắn chỉ là một phần của xác suất.
Trong quantitative trading, việc dự đoán xác suất của một lệnh giao dịch thành công (hay thua lỗ) là một yếu tố quan trọng. Một trong những công cụ phổ biến được sử dụng để dự đoán xác suất này chính là logistic regression. Mặc dù có tên gọi là “regression” (hồi quy), logistic regression lại được thiết kế đặc biệt để giải quyết các vấn đề phân loại, tức là dự đoán xác suất của sự kiện nhị phân (như "win"/"loss", "success"/"failure").
Nếu bỏ hết “mỹ từ” đi, long–short đơn giản là cách tách phần thị trường chung (beta) ra khỏi phần khác biệt do mô hình (alpha). Thay vì chỉ mua những gì mình thích, ta vừa long thứ mình cho là sẽ chạy “tương đối tốt hơn”, vừa short thứ mình cho là sẽ chạy “tương đối kém hơn”, rồi ghép lại thành một danh mục gần như trung hòa với thị trường.
video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!