Backtest là gì và tại sao backtest lại quan trọng?

01/02/2024

16,587 lượt đọc

Backtest là một quá trình quan trọng trong lĩnh vực tài chính và đầu tư, cho phép các nhà phân tích và nhà đầu tư kiểm tra hiệu suất của các chiến lược giao dịch dựa trên dữ liệu lịch sử. Quá trình này không chỉ giúp đánh giá khả năng sinh lời và rủi ro của các chiến lược mà còn là cơ sở để điều chỉnh và tối ưu hóa chúng, giảm thiểu rủi ro và tăng cơ hội đạt được lợi nhuận mong muốn. Bài viết sau sẽ cung cấp một cái nhìn tổng quan về backtest, bao gồm định nghĩa và tầm quan trọng của nó, các phương pháp backtest phổ biến, cũng như các lỗi thường gặp trong quá trình backtest và cách khắc phục, giúp nhà đầu tư có thể áp dụng một cách hiệu quả trong quá trình phân tích và phát triển chiến lược đầu tư của mình.



Backtest là gì và backtest quan trọng như thế nào?

Backtest (kiểm tra lại) là quá trình kiểm tra lại một chiến lược giao dịch cụ thể bằng cách áp dụng vào dữ liệu quá khứ, tạo ra các mô phỏng giao dịch trong quá khứ và nhằm để đánh giá hiệu quả của chiến lược. Quá trình này giúp nhà đầu tư hiểu rõ hơn về cách chiến lược sẽ hoạt động trong thực tế, mà không cần phải mạo hiểm vốn thực sự. Backtest giúp phát hiện các điểm yếu hoặc hạn chế của chiến lược giao dịch. Ví dụ, nếu chiến lược không hoạt động tốt trong điều kiện thị trường nhất định, nhà đầu tư có thể điều chỉnh để cải thiện hiệu suất của nó trong những điều kiện đó. Điều này giúp tối ưu hóa chiến lược giao dịch, giảm thiểu rủi ro và tăng cơ hội sinh lời. Ngoài ra, backtest còn giúp đặt ra các kỳ vọng thực tế cho chiến lược giao dịch. Bằng cách đánh giá hiệu suất của chiến lược qua một khoảng thời gian dài, nhà đầu tư có thể có cái nhìn tổng quan về mức lợi nhuận trung bình và mức giảm giá tối đa mà chiến lược có thể mang lại.

Backtest có thể thực hiện bằng cách kiểm tra hiệu suất chiến lược giao dịch qua việc xem xét và phân tích từng giao dịch thủ công hoặc thông qua sử dụng phần mềm chuyên dụng để tự động hóa quá trình này.

Backtest hiệu quả đòi hỏi sự chính xác trong việc lựa chọn dữ liệu lịch sử và khung thời gian phản ánh chính xác tình hình thị trường hiện tại. Dữ liệu sai lệch hoặc lựa chọn khung thời gian không phù hợp có thể dẫn đến kết quả không chính xác, làm ảnh hưởng đến quyết định giao dịch.

Các phương pháp backtest phổ biến

Backtest là một quy trình quan trọng trong phân tích và phát triển chiến lược đầu tư, trong đó các phương pháp backtest phổ biến bao gồm:

Phương pháp backtest dựa trên dữ liệu lịch sử (Historical data backtest)

Phương pháp này dựa vào việc phân tích dữ liệu giá và khối lượng giao dịch trong quá khứ của tài sản tài chính để kiểm tra chiến lược đầu tư. Điều này bao gồm việc lập trình một hệ thống tự động, trong đó chiến lược đầu tư được mã hóa dưới dạng một tập hợp các quy tắc mua và bán. Ví dụ, chiến lược có thể được xác định để mua cổ phiếu khi giá đóng cửa vượt qua đường trung bình động 50 ngày từ dưới lên và bán khi giá rớt xuống dưới đường trung bình động 200 ngày. Hệ thống sẽ tự động xác định các điểm mua và bán này trong dữ liệu lịch sử và tính toán lợi nhuận hoặc lỗ tương ứng cho mỗi giao dịch, từ đó đưa ra đánh giá về hiệu suất tổng thể của chiến lược.

 Ví dụ về kết quả backtest của Lợi nhuận theo từng Tháng


 Ví dụ về kết quả backtest của Lợi nhuận theo từng Năm


Ví dụ về các giai đoạn Giảm giá mạnh nhất trong quá khứ

Phương pháp backtest Monte Carlo

Phương pháp Monte Carlo đưa ra một cách tiếp cận dựa trên mô phỏng ngẫu nhiên để đánh giá khả năng sinh lời và rủi ro của một chiến lược đầu tư. Bằng cách sử dụng mô phỏng ngẫu nhiên, phương pháp này tạo ra một loạt các kịch bản giá tương lai có thể xảy ra, dựa trên các phân phối thống kê của dữ liệu giá lịch sử. Ví dụ, phương pháp này có thể sử dụng phân phối trả về hàng ngày của một cổ phiếu để tạo ra hàng nghìn chuỗi giá tương lai và sau đó áp dụng chiến lược đầu tư để mỗi chuỗi để đánh giá phạm vi của kết quả có thể. Điều này cho phép nhà đầu tư hiểu rõ hơn về phân phối lợi nhuận có thể và xác định khả năng đạt được mục tiêu lợi nhuận cũng như rủi ro của việc vượt quá một mức thua lỗ nhất định.


Phương pháp backtest sự kiện (Event-driven backtest)

Chiến lược dựa trên sự kiện là một phương pháp giao dịch nhằm khai thác những bất cập về giá có thể xảy ra trước hoặc sau một sự kiện doanh nghiệp hoặc tin tức. Các sự kiện doanh nghiệp bao gồm phá sản, sáp nhập, mua lại, tái cấu trúc doanh nghiệp, tách công ty ra khỏi một tập đoàn. Với chiến lược này, nhà đầu tư cố gắng tận dụng sự sai lệch giá cổ phiếu tạm thời xảy ra trước hoặc sau khi một sự kiện doanh nghiệp diễn ra.

Chiến lược này chủ yếu được sử dụng bởi các quỹ phòng hộ vì đòi hỏi kỹ năng chuyên môn cần thiết để phân tích các sự kiện doanh nghiệp cho việc thực hiện thành công. Mặc dù chiến lược này cố gắng khai thác xu hướng giá cổ phiếu của một công ty có thể gặp khó khăn trong giai đoạn thay đổi, nhưng có nhiều loại chiến lược khác nhau, bao gồm: chênh lệch giá sáp nhập, chênh lệch chuyển đổi, đầu tư vào các tình huống đặc biệt, đầu tư hoạt động, đầu tư vào tình hình khó khăn.

Những lỗi phổ biến khi backtest chiến lược

Backtest là công cụ quan trọng để đánh giá hiệu suất tiềm năng của các chiến lược đầu tư dựa trên dữ liệu lịch sử. Tuy nhiên, quá trình này không phải lúc nào cũng hoàn hảo và có thể bị ảnh hưởng bởi một số lỗi phổ biến, điều này làm giảm độ chính xác và độ tin cậy của kết quả backtest.

Overfitting: Hiện tượng quá khớp

Overfitting xảy ra khi một mô hình tài chính được điều chỉnh một cách quá mức để phù hợp với dữ liệu lịch sử, khiến cho khả năng dự báo của mô hình đối với dữ liệu mới trở nên kém hiệu quả. Hiện tượng này có thể được so sánh với việc một học viên học thuộc lòng các câu trả lời mà không hiểu rõ về nguyên tắc cơ bản, dẫn đến việc không thể áp dụng kiến thức trong các tình huống mới. Để ngăn chặn overfitting, nhà đầu tư cần phải cân nhắc giữa việc làm cho mô hình phù hợp với dữ liệu lịch sử và duy trì khả năng tổng quát hóa của mô hình.

Look-ahead Bias: Thiên lệch nhìn trước

Look-ahead bias là một lỗi phát sinh khi thông tin chưa được biết đến tại thời điểm giao dịch được sử dụng trong quá trình thực hiện chiến lược. Điều này tạo ra một bất lợi không công bằng, vì nhà đầu tư dùng thông tin tương lai để hỗ trợ quyết định đầu tư. Để tránh thiên vị này, cần thiết phải đảm bảo rằng mọi dữ liệu được sử dụng trong backtest là dữ liệu đã có sẵn tại thời điểm đó.

Ví dụ, giả sử một chiến lược đầu tư được kiểm tra dựa trên giả định rằng nhà đầu tư có thể truy cập vào báo cáo tài chính của một công ty trước khi báo cáo đó được công bố công khai. Trong thực tế, nhà đầu tư không thể có được thông tin này trước thời điểm công bố. Do đó, việc sử dụng dữ liệu này trong backtest tạo ra một ưu thế không thực sự tồn tại, dẫn đến kết quả backtest không chính xác và quá lạc quan.

Để tránh thiên lệch nhìn trước, quan trọng là phải đảm bảo rằng tất cả dữ liệu được sử dụng trong backtest đều là dữ liệu đã có sẵn và phản ánh chính xác thông tin mà nhà đầu tư có thể truy cập vào tại mỗi điểm thời gian trong quá khứ.

Survivorship Bias: Thiên lệch sống sót

Thiên vị sống sót xảy ra khi chỉ những đối tượng nghiên cứu như cổ phiếu hoặc quỹ đầu tư còn tồn tại trong thị trường vào thời điểm kết thúc của giai đoạn được phân tích được xem xét, trong khi đối tượng đã biến mất hoặc thất bại không được tính đến. Kết quả của backtest có thể phản ánh một bức tranh quá lạc quan, bởi vì nó chỉ dựa trên những "người sống sót", những đối tượng đã vượt qua được các thách thức thị trường và tồn tại đến cuối cùng.

Ví dụ, khi nghiên cứu hiệu suất của các quỹ đầu tư, nếu chỉ xem xét những quỹ còn hoạt động và loại bỏ những quỹ đã giải thể hoặc hợp nhất, kết quả sẽ không phản ánh đầy đủ mức độ rủi ro và cơ hội thực sự. Điều này tạo ra một bức tranh không chính xác về hiệu suất thị trường hoặc của một chiến lược cụ thể.

Không bao gồm chi phí giao dịch

Nhiều nhà đầu tư thường bỏ qua hoặc đánh giá thấp chi phí giao dịch như phí môi giới, phí quản lý, và trượt giá khi thực hiện backtest. Điều này giống như việc lập kế hoạch tài chính cá nhân mà không tính đến các khoản phí ngân hàng hoặc thuế. Thực tế là, ngay cả khi một chiến lược cho thấy lợi nhuận trên giấy, chi phí giao dịch thực tế có thể ăn mòn một phần lớn lợi nhuận đó, làm giảm đáng kể hiệu suất thực tế của chiến lược.

Tài liệu tham khảo

  1. Victor Ma. (n.d.). Chapter 2: What is a Backtest and Why Is It So Important? LinkedIn, https://www.linkedin.com/pulse/chapter-2-what-backtest-why-so-important-victor-ma/
  2. ExtractAlpha. (2023, ngày 27 tháng 4). Definition of Backtest, https://extractalpha.com/2023/04/27/definition-of-backtest/
  3. Investopedia. (n.d.). How to Use a Stock Screener, https://www.investopedia.com/articles/trading/05/030205.asp
  4. Corporate Finance Institute. (n.d.). Backtest: Definition and Uses, https://corporatefinanceinstitute.com/resources/data-science/backtest/
  5. Investopedia. (n.d.). Backtesting, https://www.investopedia.com/terms/b/backtest.asp


Chia sẻ bài viết

Đánh giá

Hãy là người đầu tiên nhận xét bài viết này!

Đăng ký nhận tin

Nhập Email để nhận được bản tin mới nhất từ QM Capital.

Bài viết liên quan

Những chỉ báo động lượng thiết yếu cho nhà đầu tư cá nhân
01/07/2025
9 lượt đọc

Những chỉ báo động lượng thiết yếu cho nhà đầu tư cá nhân C

Trong đầu tư chứng khoán, “động lượng” (momentum) là một trong những chiến lược kinh điển – tận dụng xu hướng đã hình thành để xác định cơ hội sinh lời. Các nghiên cứu cho thấy, chỉ số momentum của MSCI đã vượt trội so với chỉ số vốn hóa thị trường khoảng 1.4% mỗi năm trong thập kỷ qua. Dưới đây là 5 chỉ báo động lượng phổ biến, cùng ưu – nhược điểm và gợi ý ứng dụng thực tiễn dành cho nhà đầu tư cá nhân.

Robust backtesting cho chiến lược quant trading
30/06/2025
42 lượt đọc

Robust backtesting cho chiến lược quant trading C

Trong giao dịch định lượng, backtest chỉ là bước khởi đầu. Một chuỗi kết quả ấn tượng trên dữ liệu lịch sử không đảm bảo chiến lược của bạn sẽ “sống sót” khi gặp dữ liệu thực. Để tự tin triển khai live trading, cần thiết lập một quy trình robust backtesting tức kiểm chứng chiến lược qua nhiều lớp ngăn ngừa sai lệch, đảm bảo tính ổn định, loại bỏ nguy cơ vỡ trận khi thị trường bất ngờ đổi chiều.

Khám phá 4 phong cách đầu tư bền vững "Old but gold"
29/06/2025
75 lượt đọc

Khám phá 4 phong cách đầu tư bền vững "Old but gold" C

Trong đầu tư, không ít chiến lược hiện đại dựa vào thuật toán, trí tuệ nhân tạo hay dữ liệu vĩ mô phức tạp. Thế nhưng, 4 cách tiếp cận kinh điển sau đây vẫn được hàng loạt huyền thoại tài chính tin dùng bởi tính đơn giản, nguyên bản và đã minh chứng qua thời gian. Dù bạn là nhà đầu tư dài hạn hay trader lướt sóng, việc hiểu rõ ưu – nhược điểm của từng phong cách sẽ giúp xây dựng danh mục tối ưu, phù hợp với mục tiêu và khả năng chịu đựng rủi ro của bản thân.

Chiến lược Decay trong Quant Trading: Nguyên nhân, Cảnh báo và Giải pháp thực tiễn
28/06/2025
111 lượt đọc

Chiến lược Decay trong Quant Trading: Nguyên nhân, Cảnh báo và Giải pháp thực tiễn C

Strategy Decay thể hiện qua sự giảm dần tính hiệu quả của chiến lược giao dịch định lượng sau một thời gian vận hành. Ngay từ ngày đầu triển khai, một chiến lược có thể ghi nhận mức lợi suất ổn định 15 % mỗi năm và tỷ lệ thắng lệnh 52 %, nhưng sau năm đầu live trading, con số này nhanh chóng trượt về 8 % lợi nhuận và 45 % tỷ lệ thắng, trong khi mức sụt giảm tối đa trở nên sâu hơn, từ 18 % backtest lên 25 % thực tế.

Chiến lược trung bình động giao nhau
27/06/2025
90 lượt đọc

Chiến lược trung bình động giao nhau C

Trung bình động (moving average) là giá trị trung bình của một chuỗi số liệu trong một khoảng thời gian cố định, gọi là lookback period.

Tái cân bằng danh mục: công cụ kiểm soát rủi ro trong thị trường biến động
26/06/2025
120 lượt đọc

Tái cân bằng danh mục: công cụ kiểm soát rủi ro trong thị trường biến động C

Tái cân bằng (rebalancing) là quá trình đưa tỷ trọng các tài sản trong danh mục trở về mức mục tiêu đã thiết kế, sau khi biến động giá khiến chúng lệch đi. Ví dụ, một danh mục 60 % cổ phiếu – 40 % trái phiếu có thể “trôi” thành 75 % – 25 % nếu thị trường cổ phiếu tăng mạnh; việc bán bớt cổ phiếu, mua thêm trái phiếu giúp danh mục quay lại 60/40.

video-image

Truy Cập Miễn Phí Thư Viện Bot Tín Hiệu Giao Dịch Tự Động

Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.

Truy cập ngay!