22/03/2024
30,698 lượt đọc
Cách lấy dữ liệu bằng thư viện Vnstock
Tiếp nối phần trước về cách lấy dữ liệu bằng VNQuant. Bài viết này, QM Capital sẽ giới thiệu một phương pháp khác là Vnstock và thư viện này cũng dùng chung nền tảng là Python. Vnstock là thư viện Python được thiết kế bởi tác giả Vũ Thịnh nhằm để tải dữ liệu chứng khoán Việt Nam một cách dễ dàng và hoàn toàn miễn phí. Thư viện này sử dụng các nguồn cấp dữ liệu đáng tin cậy từ công ty chứng khoán và công ty phân tích thị trường tại Việt Nam. Gói này cũng được thiết kế dựa trên nguyên tắc về sự đơn giản và mã nguồn mở, hầu hết các hàm được viết dựa trên thư viện request và pandas có sẵn trên môi trường Google Colab do đó người dùng không cần cài đặt thêm các gói thư viện kèm theo.
Hình 1.1. Danh sách mã chỉ số
Hình 1.2. Dữ liệu lịch sử giá của hợp đồng tương lai VN30F1M
Hình 1.3. Dữ liệu khớp lệnh trong ngày giao dịch
Hình 1.4. Dữ liệu lịch sử của VNINDEX
Hình 1.5. Xuất file dữ liệu để sẵn sàng sử dụng với Amibroker

Hình 1.6. Biểu đồ nến và khối lượng của MWG
Dưới đây là Link Google Colab hướng dẫn chi tiết:
Phương pháp 2: Download dữ liệu từ thư viện Vnstock
Trên đây là một số ưu, nhược điểm của thư viện Vnstock mà QM Capital đã tổng hợp, hẹn mọi người trong bài viết sau về cách lấy dữ liệu từ các sàn giao dịch trên thế giới từ Tradingview bằng thư viện Tvdatafeed .
0 / 5
Trong lĩnh vực giao dịch tài chính, việc phát hiện sự thay đổi chế độ của thị trường (regime change) đóng vai trò quan trọng trong việc xác định xu hướng và điều chỉnh chiến lược giao dịch. Hai mô hình phổ biến để phát hiện sự thay đổi chế độ là Breakout Model và Crossover Model. Cả hai mô hình này đều được ứng dụng rộng rãi trong các chiến lược giao dịch tự động (quant trading) và có thể được tối ưu hóa để sử dụng hiệu quả tại thị trường Việt Nam. Trong bài viết này, chúng ta sẽ tìm hiểu sâu về hai mô hình này, cách áp dụng chúng, và cách phát hiện sự thay đổi chế độ trong thị trường tài chính Việt Nam.
Để hiểu được lý do tại sao nến Nhật (Japanese Candlestick) lại là công cụ mạnh mẽ trong giao dịch, ta cần bắt đầu từ khái niệm cơ bản. Mỗi cây nến đại diện cho 4 giá trị quan trọng trong một khoảng thời gian nhất định (tùy thuộc vào khung thời gian mà trader chọn: 1 phiên, 1 giờ, v.v.):
Khối lượng giao dịch (trading volume) là một yếu tố quan trọng không thể thiếu trong bất kỳ chiến lược giao dịch nào, đặc biệt là trong lĩnh vực quant trading. Khối lượng giao dịch giúp các nhà đầu tư đánh giá sự quan tâm và hành vi của thị trường đối với một tài sản, từ đó đưa ra quyết định chính xác về thời điểm tham gia và thoái lui. Đặc biệt tại thị trường phái sinh Việt Nam, nơi sự phát triển còn khá mới mẻ nhưng đang có tốc độ tăng trưởng mạnh mẽ, việc hiểu rõ vai trò và tác động của khối lượng giao dịch là yếu tố không thể thiếu đối với các nhà đầu tư áp dụng chiến lược quant.
Swing trading là kiểu giao dịch dựa trên việc tận dụng những nhịp dao động của thị trường, thường kéo dài vài phiên đến vài tuần. Đây không phải câu chuyện “ngồi canh từng phút từng giây”, mà là cách tiếp cận trung hạn, bám nhịp giá và nhịp dòng tiền. Khi áp dụng vào thị trường Việt Nam, swing trading lại càng phù hợp hơn, đơn giản vì VN-Index và nhóm VN30 luôn tồn tại những dao động vừa đủ lớn để trader có thể tận dụng, nhưng không quá nhiễu như các thị trường crypto hay forex.
Mô hình Markowitz, hay còn gọi là Mô hình Trung Bình - Phương Sai (Mean-Variance Model), là nền tảng của lý thuyết danh mục đầu tư hiện đại và đã được phát triển bởi Harry Markowitz vào năm 1952. Mô hình này được xem là một trong những công cụ mạnh mẽ giúp các nhà đầu tư xây dựng danh mục đầu tư tối ưu, kết hợp giữa các tài sản khác nhau sao cho tối đa hóa lợi nhuận kỳ vọng trong khi giảm thiểu rủi ro. Cốt lõi của mô hình là phân tích sự kết hợp giữa các tài sản dựa trên lợi nhuận kỳ vọng và độ biến động (rủi ro) của chúng.
Thống kê Bayes xuất phát từ một nguyên tắc rất tự nhiên nhưng lại có sức mạnh đặc biệt lớn trong các hệ thống phức tạp như thị trường tài chính: niềm tin của chúng ta về một hiện tượng không cố định, mà thay đổi khi có thêm thông tin mới. Trong bối cảnh tài chính, điều này đặc biệt quan trọng vì thị trường không có trạng thái cân bằng lâu dài; thay vào đó, nó liên tục chuyển đổi qua nhiều chế độ (regime), thường xuyên chịu tác động bởi tin tức, dòng tiền, tâm lý nhà đầu tư và các yếu tố bất ngờ khác. Định lý Bayes cho phép chúng ta mô hình hóa sự thay đổi này thông qua ba thành phần cơ bản: “prior” – niềm tin ban đầu, “likelihood” – khả năng bằng chứng xuất hiện nếu giả thuyết đúng, và “posterior” – niềm tin đã được cập nhật.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!