06/09/2025
303 lượt đọc
Trong quantitative trading (giao dịch định lượng), khái niệm correlation (tương quan) đóng vai trò nền tảng trong việc phân tích dữ liệu tài chính. Trên thực tế, mọi quyết định giao dịch định lượng đều dựa vào khả năng định lượng mối quan hệ giữa các biến số tài chính, và correlation là thước đo chính xác nhất để làm điều này.
Correlation đo lường mức độ mà hai biến số di chuyển cùng nhau về hướng và biên độ. Trong bối cảnh thị trường tài chính, các biến số này có thể là:
Hiểu được correlation không chỉ giúp nhà giao dịch biết hai tài sản có di chuyển theo cùng hướng hay ngược hướng, mà còn giúp dự đoán độ biến động tương đối, từ đó tối ưu hóa chiến lược giao dịch và quản lý rủi ro.
Trong quản lý danh mục đầu tư, correlation là một công cụ quan trọng để:
Ngoài ra, correlation cũng được sử dụng để đánh giá tương tác giữa tài sản và yếu tố vĩ mô (macro factors) như lãi suất, tỷ giá, hay giá dầu thô. Ví dụ, nếu lợi suất trái phiếu chính phủ có correlation âm với cổ phiếu ngân hàng, các quants có thể dự đoán biến động cổ phiếu dựa vào chuyển động của trái phiếu, từ đó xây dựng các chiến lược alpha generation.
Trong quantitative trading, correlation không chỉ đơn thuần là một con số biểu diễn mối quan hệ giữa hai biến, mà còn là công cụ phân tích chiến lược để dự đoán biến động thị trường và tối ưu hóa danh mục đầu tư.
Correlation đo lường:
Hệ số tương quan (correlation coefficient), ký hiệu ρ (rho), là giá trị chuẩn hóa của covariance, nằm trong khoảng -1 đến +1:
Trong quantitative trading, hệ số tương quan (correlation coefficient) giữa hai biến số X và Y được định nghĩa bằng công thức:
Trong đó:
Ý nghĩa:
Trong trading định lượng, công thức này giúp so sánh các mối quan hệ giữa nhiều cặp tài sản khác nhau, bất kể chúng có đơn vị đo lường hay biên độ khác nhau.
Trong quantitative trading, correlation là một công cụ đa năng, có vai trò quan trọng trong cả quản lý rủi ro, xây dựng danh mục, phát hiện cơ hội giao dịch và dự đoán lợi suất.
0 / 5
Trong thế giới tài chính hiện đại, nơi mọi quyết định đều có thể bị ảnh hưởng bởi cảm xúc, tin đồn và sự nhiễu loạn thông tin, việc duy trì kỷ luật trong đầu tư là điều cực kỳ khó. System Trading ra đời để giải quyết chính vấn đề đó.
Trong lý thuyết tài chính hiện đại, người ta thường nói rằng tỷ giá hối đoái di chuyển ngẫu nhiên (random walk). Điều này xuất phát từ Giả thuyết Thị trường Hiệu quả (Efficient Market Hypothesis – EMH): giá đã phản ánh toàn bộ thông tin sẵn có, do đó không ai có thể kiếm lời một cách bền vững từ dự đoán biến động tỷ giá. Tuy nhiên, hơn 50 năm qua, hàng trăm nghiên cứu thực nghiệm lại chỉ ra rằng — thị trường ngoại hối (FX) không hề “hoàn hảo” như sách vở. Nó tồn tại những “anomaly” – các hiện tượng phi hiệu quả có thể đo lường và khai thác được.
Khái niệm thị trường hiệu quả (Efficient Market Hypothesis – EMH) được Eugene Fama phát triển từ thập niên 1970, nhưng gốc rễ của nó bắt nguồn từ đầu thế kỷ XX với công trình của Louis Bachelier. Theo EMH, giá chứng khoán tại mọi thời điểm đã phản ánh đầy đủ các thông tin sẵn có; do đó, không nhà đầu tư nào có thể đạt được lợi nhuận vượt trội một cách bền vững. Dưới góc độ thống kê, điều này đồng nghĩa với việc chuỗi lợi nhuận của tài sản là ngẫu nhiên, không có tự tương quan và tuân theo một quá trình ngẫu nhiên (random walk).
Nếu bạn nhìn lại chuỗi giá vàng từ năm 2000 đến nay, sẽ thấy một điều: dù biến động, vàng vẫn là tài sản có “pattern” khá ổn định. Trung bình lợi nhuận năm khoảng 7–9%. Volatility (độ biến động) quanh 12–18%. Những cú sốc lớn (như 2008, 2011, 2020) đều có nguyên nhân rõ ràng và mô hình có thể “fit” lại được.
Khoảng hai thập kỷ qua, giới đầu tư toàn cầu dần nhận ra rằng việc “bám” chỉ số thị trường không luôn là lựa chọn tối ưu. Chỉ số vốn hóa lớn như VN-Index hay S&P 500 có xu hướng tập trung phần lớn tỷ trọng vào vài doanh nghiệp khổng lồ. Khi giá các mã này tăng quá mạnh, quỹ chỉ số buộc phải mua thêm, khiến rủi ro “mua đỉnh” trở nên hiện hữu. Trong khi đó, các quỹ chủ động tuy linh hoạt hơn nhưng lại đắt đỏ và phụ thuộc vào cảm tính của nhà quản lý.
Trong hơn nửa thế kỷ qua, mô hình Capital Asset Pricing Model (CAPM) được xem là nền tảng của định giá tài sản. CAPM giả định một quan hệ tuyến tính rõ ràng: cổ phiếu rủi ro cao (beta cao) sẽ phải trả lợi nhuận kỳ vọng cao hơn để bù đắp rủi ro, trong khi cổ phiếu rủi ro thấp (beta thấp) sẽ mang lại lợi nhuận thấp hơn.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!