06/07/2025
711 lượt đọc
Trong tài chính định lượng (Quantitative Finance), có một khái niệm xuất hiện lặp đi lặp lại trong mọi mô hình liên quan đến định giá, kiểm soát rủi ro, và chiến lược phái sinh: PDE – Partial Differential Equation (phương trình vi phân riêng phần).
Nghe thì “nặng mùi toán học”, nhưng nếu bạn:
Thì bạn đang dùng PDE mỗi ngày, chỉ có thể là bạn chưa biết mà thôi.
PDE, hay phương trình vi phân riêng phần, là một loại phương trình toán học mô tả sự thay đổi liên tục của một đại lượng theo nhiều biến độc lập – thường là thời gian, giá tài sản cơ sở, biến động, hoặc lãi suất.
Trong tài chính, PDE thường được dùng để mô hình hóa sự thay đổi của:
Tại Việt Nam, việc giao dịch hợp đồng tương lai VN30 hay quyền chọn trên VN30 đang ngày càng phổ biến. Nhưng để định giá đúng, hiểu đúng rủi ro của các sản phẩm đó, chúng ta không thể bỏ qua tư duy của PDE.
Hiện nay, Sở Giao dịch Chứng khoán TP.HCM (HOSE) đang vận hành thị trường quyền chọn trên chỉ số VN30, trong đó phổ biến nhất là quyền chọn châu Âu.
Khi bạn giao dịch một quyền chọn mua VN30 (European Call), giá quyền chọn mà bạn nhìn thấy trên sổ lệnh (orderbook) không phải tự nhiên mà có. Nó được tính toán từ mô hình Black-Scholes – một lời giải kinh điển của PDE với giả định:
Ví dụ: Bạn định giá một quyền chọn mua VN30 với strike 1,300, đáo hạn 15 ngày, spot VN30 hiện tại là 1,310, volatility nội tại khoảng 20%/năm, lãi suất phi rủi ro 5%. PDE sẽ mô hình hóa cách giá quyền chọn thay đổi khi:
Nếu không hiểu PDE, bạn sẽ chỉ nhìn thấy “giá” quyền chọn. Nhưng nếu hiểu, bạn sẽ thấy dòng chảy của rủi ro trong thời gian thực – cái mà rất ít nhà đầu tư cá nhân để ý.
Một số trader chuyên nghiệp tại Việt Nam (và các desk nước ngoài đầu tư vào thị trường VN30 thông qua derivatives) thường chơi chiến lược long gamma – short theta. Cụ thể:
Chiến lược này kỳ vọng thị trường biến động mạnh để giá quyền chọn tăng, bất kể thị trường tăng hay giảm.
PDE lúc này không còn là công thức để định giá, mà là framework giúp bạn nhìn thấy rủi ro tiềm ẩn:
Không ít trader mới tại Việt Nam học theo chiến lược “mua quyền chọn ăn biến động”, nhưng không hiểu rõ tác động chéo giữa gamma–theta–vega được thể hiện qua PDE. Họ chỉ thấy P&L hiện tại, nhưng không thấy dạng rủi ro đang trôi ngầm trong thời gian tới.
Bạn đang viết một chiến lược định lượng như:
Backtest cho thấy lợi nhuận rất đẹp. Nhưng vấn đề là gì?
Bạn đang mô hình hóa hành vi thị trường bằng logic tuyến tính, trong khi thị trường có phản ứng phi tuyến tính – đặc biệt là trong các giai đoạn biến động mạnh như T3/2020 hay T5/2023.
PDE không chỉ giúp định giá. Nó còn là khung tư duy để:
Một số nhóm Quant tại Việt Nam hiện đã bắt đầu mô phỏng PDE ngược (backward PDE) để đánh giá xác suất tồn tại của chiến lược trong thời gian dài – đây là cách tiếp cận rất thông minh và thiết thực.
PDE không bắt bạn trở thành nhà toán học. Nhưng nó giúp bạn:
Bạn không cần giải PDE từng dòng. Nhưng bạn cần hiểu:
Tại Việt Nam, thị trường đang mở ra rất nhiều cơ hội mới cho nhà đầu tư định lượng: từ quyền chọn VN30, hợp đồng tương lai, đến thị trường cổ phiếu biến động cao.
Nhưng nếu bạn muốn không chỉ "sống sót" mà còn "tối ưu hóa" danh mục trong thời gian dài – hiểu tư duy PDE là điều bắt buộc.
Hãy xây dựng và kiểm thử chiến lược giao dịch phái sinh của bạn trên nền tảng QMTRADE trước khi sử dụng tiền thật để tránh những rủi ro không đáng có.
0 / 5
Trong vài thập kỷ qua, sự bùng nổ của công nghệ thông tin và phân tích dữ liệu đã làm thay đổi căn bản cách thị trường tài chính vận hành. Một trong những “công cụ” gây ảnh hưởng lớn nhất chính là Black Box Trading – hệ thống giao dịch dựa trên thuật toán, nơi mà logic ra quyết định nằm ẩn trong một cấu trúc lập trình kín, không được công khai.
Trong Quant trading, việc phân tích dữ liệu thị trường không chỉ dừng lại ở các chỉ số tổng hợp như giá mở cửa, đóng cửa, cao nhất, thấp nhất (OHLC) theo khung giờ phút hoặc ngày. Để hiểu sâu cách giá cả được hình thành và biến động trong từng khoảnh khắc, các nhà nghiên cứu và quỹ định lượng (quant funds) dựa vào một loại dữ liệu tinh vi hơn: Tick-by-Tick (TBT) Data. Đây là lớp dữ liệu vi mô (micro-level) phản ánh từng sự kiện trong order book, từ đó cung cấp một bức tranh chi tiết nhất về động lực cung – cầu trên thị trường.
Market Microstructure (Vi cấu trúc thị trường) được định nghĩa bởi National Bureau of Economic Research (NBER) là lĩnh vực tập trung vào kinh tế học của thị trường chứng khoán: cách thức thị trường được thiết kế, cơ chế khớp lệnh, hình thành giá, chi phí giao dịch và hành vi của nhà đầu tư. Nếu ví thị trường tài chính giống như một “cỗ máy”, thì market microstructure chính là bộ phận cơ khí và đường dây điện quyết định chiếc máy đó chạy nhanh, trơn tru hay chậm chạp.
Trong giao dịch tài chính, không phải lúc nào cũng là chuyện “mua rẻ bán đắt”. Với những tổ chức quản lý hàng tỷ USD, bài toán khó nhất lại nằm ở chỗ: làm sao mua/bán khối lượng cực lớn mà không tự tay đẩy giá đi ngược lại mình. Đây chính là lúc khái niệm High Volume Trading (giao dịch khối lượng lớn) xuất hiện.
Trong giao dịch định lượng (Quantitative Trading), việc sử dụng dữ liệu chính xác và có cấu trúc rõ ràng không chỉ giúp nhà đầu tư có cái nhìn tổng quan về thị trường mà còn đóng vai trò quan trọng trong việc đưa ra các quyết định giao dịch chính xác và kịp thời. Tuy nhiên, data handling (xử lý dữ liệu) lại là một bước quan trọng nhưng ít được chú trọng đúng mức. Cùng QM Capital tìm hiểu cách xử lý dữ liệu giúp tối ưu hóa chiến lược giao dịch và tại sao nó lại quan trọng trong Quantitative Trading.
Định lý Bayes, hay còn gọi là Luật Bayes, được đặt theo tên của nhà triết học và thống kê học người Anh Thomas Bayes. Định lý này mô tả cách thức tính toán xác suất của một sự kiện dựa trên kiến thức trước đó về những điều kiện có thể liên quan đến sự kiện đó.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!