30/06/2025
528 lượt đọc
Trong giao dịch định lượng, backtest chỉ là bước khởi đầu. Một chuỗi kết quả ấn tượng trên dữ liệu lịch sử không đảm bảo chiến lược của bạn sẽ “sống sót” khi gặp dữ liệu thực. Để tự tin triển khai live trading, cần thiết lập một quy trình robust backtesting tức kiểm chứng chiến lược qua nhiều lớp ngăn ngừa sai lệch, đảm bảo tính ổn định, loại bỏ nguy cơ vỡ trận khi thị trường bất ngờ đổi chiều.
Trong backtesting chiến lược định lượng, hai kẻ thù đáng sợ nhất chính là overfitting và data-snooping bias. Nếu không kiểm soát chặt chẽ, bạn dễ dàng thu được kết quả “tuyệt vời” trên dữ liệu lịch sử nhưng lại hoàn toàn thất bại khi live trading.
Thay vì chia dữ liệu theo một bản train/test duy nhất, phương pháp k-fold cross-validation mang lại cái nhìn toàn diện và công bằng hơn:
Lưu ý: Với series thời gian có tính tự tương quan, bạn nên áp dụng blocked k-fold—khi chia fold, đảm bảo không phá vỡ thứ tự thời gian (ví dụ fold 1: năm 2010–2012, fold 2: 2013–2015, …).
Walk-forward testing (WFT) mô phỏng sát nhất quy trình live trading, trong đó bạn định kỳ tinh chỉnh (re-optimize) tham số trên dữ liệu mới nhất:
Thực hành: Khi re-optimize, chỉ tối ưu một nhóm nhỏ tham số (ví dụ lookback period) và giữ nguyên các tham số khác để tránh overfitting lan tỏa vào mọi khía cạnh mô hình.
Mỗi tín hiệu (signal) chỉ nên dựa trên 2–3 biến cốt lõi—ví dụ momentum và volatility—và tránh tham số hóa quá sâu (ví dụ không thử nhiều hơn 5 mức lookback cho bất kỳ biến nào). Các kỹ thuật regularization từ machine learning cũng có thể áp dụng:
Sau khi thu được kết quả backtest, bạn có thể áp dụng:
Nếu kết quả Reality Check cho p-value > 0.1, nguy cơ chiến lược chỉ là kết quả trùng hợp cao bạn nên xem lại cả thiết kế tín hiệu và quy trình backtest.
Một chiến lược định lượng chỉ thực sự mạnh khi nó chịu được áp lực chi phí giao dịch và những cú sốc lớn của thị trường. Nếu backtest chỉ tính lợi nhuận mà bỏ qua chi phí và những giai đoạn khủng hoảng, khi live trading bạn sẽ nhanh chóng đối mặt với kết quả “chua chát”.
1. Commission theo tier broker
Trong mô hình backtest, gán commission cho mỗi lệnh dựa trên khối lượng giả định và tier phù hợp.
2. Bid–ask spread độnG
3. Slippage theo khối lượng so với ADV
Trong đó base_slippage có thể là 0.02% (mức trung bình của nhóm large-cap).
Áp dụng đồng thời ba thành phần trên, mô hình không chỉ “ăn” đúng spread hay phí nhất định mà còn phản ánh chi phí giao dịch thay đổi theo thời điểm, mã và kích thước lệnh.
Để đánh giá khả năng chịu đựng của chiến lược, bạn cần mô phỏng các giai đoạn thị trường khốc liệt nhất trong lịch sử và những kịch bản giả định vĩ mô tương lai.
Mục tiêu chung: Sau khi áp toàn bộ chi phí giao dịch và 3 kịch bản stress-test, Maximum Drawdown (MDD) live phải ≤ 1.5 × MDD_backtest. Nếu MDD_live vượt ngưỡng này, bạn cần:
Backtest trên lịch sử chỉ giúp bạn biết chiến lược hoạt động thế nào với dữ liệu “đóng hộp”. Nhưng live trading thực sự giống đặt cược vào những kịch bản chưa từng thấy biến động, lệnh lỗi, chi phí thị trường. Trước khi đưa tiền thật vào, hãy cho chiến lược “chạy thử” qua forward-test và paper-trading trong 6–12 tháng.
Khi bất kỳ chỉ báo nào chạm ngưỡng cảnh báo, hệ thống sẽ:
Giả sử bạn có chiến lược Breakout trên rổ VN30:
Kết quả cho thấy Sharpe và hit rate đều vượt ngưỡng cảnh báo, MDD_forward cũng nhỉnh hơn giới hạn 1.2×. Bạn sẽ phải:
Từ paper-trading đến live
Hãy xây dựng và kiểm thử chiến lược giao dịch phái sinh của bạn trên nền tảng QMTRADE trước khi sử dụng tiền thật để tránh những rủi ro không đáng có.
0 / 5
Trong vài thập kỷ qua, sự bùng nổ của công nghệ thông tin và phân tích dữ liệu đã làm thay đổi căn bản cách thị trường tài chính vận hành. Một trong những “công cụ” gây ảnh hưởng lớn nhất chính là Black Box Trading – hệ thống giao dịch dựa trên thuật toán, nơi mà logic ra quyết định nằm ẩn trong một cấu trúc lập trình kín, không được công khai.
Trong Quant trading, việc phân tích dữ liệu thị trường không chỉ dừng lại ở các chỉ số tổng hợp như giá mở cửa, đóng cửa, cao nhất, thấp nhất (OHLC) theo khung giờ phút hoặc ngày. Để hiểu sâu cách giá cả được hình thành và biến động trong từng khoảnh khắc, các nhà nghiên cứu và quỹ định lượng (quant funds) dựa vào một loại dữ liệu tinh vi hơn: Tick-by-Tick (TBT) Data. Đây là lớp dữ liệu vi mô (micro-level) phản ánh từng sự kiện trong order book, từ đó cung cấp một bức tranh chi tiết nhất về động lực cung – cầu trên thị trường.
Market Microstructure (Vi cấu trúc thị trường) được định nghĩa bởi National Bureau of Economic Research (NBER) là lĩnh vực tập trung vào kinh tế học của thị trường chứng khoán: cách thức thị trường được thiết kế, cơ chế khớp lệnh, hình thành giá, chi phí giao dịch và hành vi của nhà đầu tư. Nếu ví thị trường tài chính giống như một “cỗ máy”, thì market microstructure chính là bộ phận cơ khí và đường dây điện quyết định chiếc máy đó chạy nhanh, trơn tru hay chậm chạp.
Trong giao dịch tài chính, không phải lúc nào cũng là chuyện “mua rẻ bán đắt”. Với những tổ chức quản lý hàng tỷ USD, bài toán khó nhất lại nằm ở chỗ: làm sao mua/bán khối lượng cực lớn mà không tự tay đẩy giá đi ngược lại mình. Đây chính là lúc khái niệm High Volume Trading (giao dịch khối lượng lớn) xuất hiện.
Trong giao dịch định lượng (Quantitative Trading), việc sử dụng dữ liệu chính xác và có cấu trúc rõ ràng không chỉ giúp nhà đầu tư có cái nhìn tổng quan về thị trường mà còn đóng vai trò quan trọng trong việc đưa ra các quyết định giao dịch chính xác và kịp thời. Tuy nhiên, data handling (xử lý dữ liệu) lại là một bước quan trọng nhưng ít được chú trọng đúng mức. Cùng QM Capital tìm hiểu cách xử lý dữ liệu giúp tối ưu hóa chiến lược giao dịch và tại sao nó lại quan trọng trong Quantitative Trading.
Định lý Bayes, hay còn gọi là Luật Bayes, được đặt theo tên của nhà triết học và thống kê học người Anh Thomas Bayes. Định lý này mô tả cách thức tính toán xác suất của một sự kiện dựa trên kiến thức trước đó về những điều kiện có thể liên quan đến sự kiện đó.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!