30/06/2025
123 lượt đọc
Trong giao dịch định lượng, backtest chỉ là bước khởi đầu. Một chuỗi kết quả ấn tượng trên dữ liệu lịch sử không đảm bảo chiến lược của bạn sẽ “sống sót” khi gặp dữ liệu thực. Để tự tin triển khai live trading, cần thiết lập một quy trình robust backtesting tức kiểm chứng chiến lược qua nhiều lớp ngăn ngừa sai lệch, đảm bảo tính ổn định, loại bỏ nguy cơ vỡ trận khi thị trường bất ngờ đổi chiều.
Trong backtesting chiến lược định lượng, hai kẻ thù đáng sợ nhất chính là overfitting và data-snooping bias. Nếu không kiểm soát chặt chẽ, bạn dễ dàng thu được kết quả “tuyệt vời” trên dữ liệu lịch sử nhưng lại hoàn toàn thất bại khi live trading.
Thay vì chia dữ liệu theo một bản train/test duy nhất, phương pháp k-fold cross-validation mang lại cái nhìn toàn diện và công bằng hơn:
Lưu ý: Với series thời gian có tính tự tương quan, bạn nên áp dụng blocked k-fold—khi chia fold, đảm bảo không phá vỡ thứ tự thời gian (ví dụ fold 1: năm 2010–2012, fold 2: 2013–2015, …).
Walk-forward testing (WFT) mô phỏng sát nhất quy trình live trading, trong đó bạn định kỳ tinh chỉnh (re-optimize) tham số trên dữ liệu mới nhất:
Thực hành: Khi re-optimize, chỉ tối ưu một nhóm nhỏ tham số (ví dụ lookback period) và giữ nguyên các tham số khác để tránh overfitting lan tỏa vào mọi khía cạnh mô hình.
Mỗi tín hiệu (signal) chỉ nên dựa trên 2–3 biến cốt lõi—ví dụ momentum và volatility—và tránh tham số hóa quá sâu (ví dụ không thử nhiều hơn 5 mức lookback cho bất kỳ biến nào). Các kỹ thuật regularization từ machine learning cũng có thể áp dụng:
Sau khi thu được kết quả backtest, bạn có thể áp dụng:
Nếu kết quả Reality Check cho p-value > 0.1, nguy cơ chiến lược chỉ là kết quả trùng hợp cao bạn nên xem lại cả thiết kế tín hiệu và quy trình backtest.
Một chiến lược định lượng chỉ thực sự mạnh khi nó chịu được áp lực chi phí giao dịch và những cú sốc lớn của thị trường. Nếu backtest chỉ tính lợi nhuận mà bỏ qua chi phí và những giai đoạn khủng hoảng, khi live trading bạn sẽ nhanh chóng đối mặt với kết quả “chua chát”.
1. Commission theo tier broker
Trong mô hình backtest, gán commission cho mỗi lệnh dựa trên khối lượng giả định và tier phù hợp.
2. Bid–ask spread độnG
3. Slippage theo khối lượng so với ADV
Trong đó base_slippage có thể là 0.02% (mức trung bình của nhóm large-cap).
Áp dụng đồng thời ba thành phần trên, mô hình không chỉ “ăn” đúng spread hay phí nhất định mà còn phản ánh chi phí giao dịch thay đổi theo thời điểm, mã và kích thước lệnh.
Để đánh giá khả năng chịu đựng của chiến lược, bạn cần mô phỏng các giai đoạn thị trường khốc liệt nhất trong lịch sử và những kịch bản giả định vĩ mô tương lai.
Mục tiêu chung: Sau khi áp toàn bộ chi phí giao dịch và 3 kịch bản stress-test, Maximum Drawdown (MDD) live phải ≤ 1.5 × MDD_backtest. Nếu MDD_live vượt ngưỡng này, bạn cần:
Backtest trên lịch sử chỉ giúp bạn biết chiến lược hoạt động thế nào với dữ liệu “đóng hộp”. Nhưng live trading thực sự giống đặt cược vào những kịch bản chưa từng thấy biến động, lệnh lỗi, chi phí thị trường. Trước khi đưa tiền thật vào, hãy cho chiến lược “chạy thử” qua forward-test và paper-trading trong 6–12 tháng.
Khi bất kỳ chỉ báo nào chạm ngưỡng cảnh báo, hệ thống sẽ:
Giả sử bạn có chiến lược Breakout trên rổ VN30:
Kết quả cho thấy Sharpe và hit rate đều vượt ngưỡng cảnh báo, MDD_forward cũng nhỉnh hơn giới hạn 1.2×. Bạn sẽ phải:
Từ paper-trading đến live
Hãy xây dựng và kiểm thử chiến lược giao dịch phái sinh của bạn trên nền tảng QMTRADE trước khi sử dụng tiền thật để tránh những rủi ro không đáng có.
0 / 5
Trong quant trading (giao dịch định lượng), mọi quyết định mà nhà đầu tư đưa ra đều dựa trên một sự thật cốt lõi: thị trường là bất định. Bạn không thể biết chắc ngày mai giá cổ phiếu sẽ tăng hay giảm. Cũng không thể khẳng định chắc chắn mức độ biến động tuần tới là cao hay thấp. Tất cả những yếu tố này đều mang tính ngẫu nhiên và đó là lý do biến ngẫu nhiên (random variable) trở thành nền tảng không thể thiếu trong bất kỳ mô hình định lượng nào.
Khi nhắc tới toán học, nhiều người hình dung ngay tới những phương trình phức tạp hoặc công thức khô khan. Thế nhưng có một nhánh của toán học không chỉ gần gũi với đời sống mà còn đóng vai trò cực kỳ quan trọng trong rất nhiều lĩnh vực hiện đại, từ kinh doanh, đầu tư, khoa học, y tế, cho đến trí tuệ nhân tạo: đó chính là thống kê (statistics).
Dữ liệu không bao giờ “hiền lành”. Một vài cổ phiếu có thể tăng sốc 50%, 100%, trong khi phần lớn các mã còn lại chỉ quanh quẩn trong biên độ ±5%. Lúc này, nếu bạn dùng trung bình cộng (mean) để đánh giá danh mục, rất dễ bị đánh lừa.
Trong tài chính định lượng (Quantitative Finance), có một khái niệm xuất hiện lặp đi lặp lại trong mọi mô hình liên quan đến định giá, kiểm soát rủi ro, và chiến lược phái sinh: PDE – Partial Differential Equation (phương trình vi phân riêng phần).
Trong đầu tư tài chính, "momentum" (đà tăng giá) đề cập đến xu hướng giá của một cổ phiếu tiếp tục di chuyển theo cùng một hướng trong một khoảng thời gian nhất định. Khi một cổ phiếu bắt đầu tăng giá với tốc độ ổn định và có thanh khoản cao, điều đó thường phản ánh sự ủng hộ mạnh mẽ từ dòng tiền – một yếu tố cực kỳ quan trọng.
Trong đầu tư chứng khoán, “động lượng” (momentum) là một trong những chiến lược kinh điển – tận dụng xu hướng đã hình thành để xác định cơ hội sinh lời. Các nghiên cứu cho thấy, chỉ số momentum của MSCI đã vượt trội so với chỉ số vốn hóa thị trường khoảng 1.4% mỗi năm trong thập kỷ qua. Dưới đây là 5 chỉ báo động lượng phổ biến, cùng ưu – nhược điểm và gợi ý ứng dụng thực tiễn dành cho nhà đầu tư cá nhân.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!