09/07/2025
594 lượt đọc
Khi nhắc tới toán học, nhiều người hình dung ngay tới những phương trình phức tạp hoặc công thức khô khan. Thế nhưng có một nhánh của toán học không chỉ gần gũi với đời sống mà còn đóng vai trò cực kỳ quan trọng trong rất nhiều lĩnh vực hiện đại, từ kinh doanh, đầu tư, khoa học, y tế, cho đến trí tuệ nhân tạo: đó chính là thống kê (statistics).
Vậy thống kê thực sự là gì? Tại sao nó quan trọng đến thế trong thời đại dữ liệu ngày nay?
Hiểu một cách đơn giản, thống kê là ngành toán học chuyên thu thập, tổ chức, phân tích và diễn giải dữ liệu số. Thống kê sử dụng các lý thuyết toán học, đặc biệt là xác suất, để biến dữ liệu tưởng chừng rối rắm trở nên rõ ràng, có ý nghĩa và mang tính dự báo.
Hãy hình dung bạn đang có hàng nghìn điểm dữ liệu về lợi suất cổ phiếu hoặc thông tin khách hàng của doanh nghiệp. Nếu chỉ nhìn vào từng con số riêng lẻ, chắc chắn bạn sẽ thấy vô nghĩa. Nhưng khi dùng thống kê để phân tích và tổng hợp, bạn sẽ thấy rõ ràng những thông tin vô cùng hữu ích như: xu hướng, rủi ro tiềm ẩn, cơ hội đầu tư và cả hành vi của khách hàng.
Nói một cách hình tượng, thống kê là nghệ thuật biến dữ liệu thành câu chuyện có ý nghĩa.
Hai nhánh chính của thống kê
Thống kê được chia làm hai nhánh chính: Descriptive Statistics (thống kê mô tả) và Inferential Statistics (thống kê suy luận). Hai nhánh này có vai trò và cách tiếp cận hoàn toàn khác nhau.
1. Thống kê mô tả (Descriptive Statistics)
Thống kê mô tả đúng như tên gọi của nó – giúp bạn mô tả và hiểu rõ dữ liệu mình có trong tay. Công việc chính của thống kê mô tả gồm:
Ví dụ thực tế:
Bạn có danh sách lợi suất hàng ngày của cổ phiếu Vingroup trong vòng 1 năm. Nếu dùng thống kê mô tả, bạn sẽ nhanh chóng biết được lợi suất trung bình của cổ phiếu này là bao nhiêu, độ lệch biến động của nó như thế nào, và đâu là mức lợi suất phổ biến nhất trong năm qua.
2. Thống kê suy luận (Inferential Statistics)
Nếu thống kê mô tả chỉ cung cấp cho bạn bức tranh dữ liệu bạn đang có, thì thống kê suy luận giúp bạn tiến xa hơn rất nhiều. Nó cho phép bạn đưa ra kết luận hoặc dự báo về một tổng thể lớn hơn, dựa trên một tập dữ liệu mẫu nhỏ.
Hay nói cách khác, bạn không cần phải phân tích dữ liệu của tất cả khách hàng, tất cả cổ phiếu, hoặc tất cả dân số để đưa ra kết luận. Bạn chỉ cần lấy một mẫu nhỏ, phân tích mẫu này và dùng các kỹ thuật của thống kê suy luận để kết luận với mức độ tin cậy cao cho toàn bộ tổng thể lớn.
Các kỹ thuật phổ biến trong thống kê suy luận gồm:
Ví dụ thực tế:
Giả sử bạn muốn biết liệu chiến lược đầu tư của mình có hiệu quả hơn thị trường chung hay không. Thay vì phải phân tích tất cả mã cổ phiếu trên thị trường, bạn lấy một mẫu nhỏ, dùng thống kê suy luận để kiểm định. Nếu kết quả cho thấy chiến lược của bạn có hiệu suất vượt trội ở mức độ tin cậy cao (ví dụ 95%), bạn có thể tin tưởng và tiếp tục áp dụng chiến lược đó cho toàn bộ danh mục.
Khi bạn đọc báo hoặc xem phân tích trên TV, phần lớn thông tin là cảm tính hoặc tổng hợp từ một vài ví dụ. Nhưng thống kê giúp bạn thấy được toàn cảnh dữ liệu, từ đó:
Ví dụ, thay vì chỉ nhìn vào VN-Index tăng/giảm trong ngày, bạn có thể dùng thống kê phân phối lợi suất để thấy rằng: mặc dù chỉ số tăng nhẹ, nhưng phần lớn cổ phiếu mid-cap đang giảm, dòng tiền thực chất đang “lén lút rút ra” khỏi thị trường.
Không phải nhà đầu tư nào cũng có khả năng đánh giá rủi ro chính xác. Nhiều người nhầm tưởng rằng giá cổ phiếu biến động nhiều nghĩa là "có tiềm năng", trong khi sự biến động cao lại đồng nghĩa với rủi ro cao – nếu bạn không đo lường được.
Thống kê giúp bạn đo lường rủi ro thông qua các chỉ số như:
→ Không còn là những phỏng đoán mơ hồ. Mọi thứ trở nên rõ ràng, có cơ sở và có thể đo lường.
Nếu bạn đang sử dụng backtest, machine learning, hoặc các chiến lược định lượng (quant strategy), bạn đang sử dụng thống kê mỗi ngày mà có thể không nhận ra.
Trong bối cảnh thị trường phức tạp và cạnh tranh như hiện nay, chỉ những nhà đầu tư hiểu rõ dữ liệu, có mô hình định lượng và biết dùng thống kê để ra quyết định mới có thể kiểm soát rủi ro tốt và giữ được lợi thế lâu dài.
Cuối cùng – nhưng quan trọng nhất – thống kê rèn luyện cho bạn một tư duy "ra quyết định từ số liệu". Thay vì hỏi:
Bạn sẽ chuyển sang hỏi:
Và khi bạn hỏi được những câu hỏi tốt hơn, bạn sẽ có quyết định đầu tư tốt hơn
Không quá lời khi nói thống kê chính là “ngôn ngữ” của dữ liệu. Biết cách sử dụng thống kê sẽ giúp bạn biến những con số khô khan trở thành hiểu biết thực tế và hành động thông minh. Trong thời đại mà dữ liệu đang ngày càng trở nên giá trị, thống kê chắc chắn sẽ còn quan trọng hơn nữa trong tương lai.
Hãy xây dựng và kiểm thử chiến lược giao dịch phái sinh của bạn trên nền tảng QMTRADE trước khi sử dụng tiền thật để tránh những rủi ro không đáng có.
0 / 5
Trong thị trường phái sinh Việt Nam, nơi thanh khoản tập trung gần như toàn bộ vào hợp đồng VN30F1M, hành vi giá thường nhiễu, dao động mạnh và chịu ảnh hưởng lớn từ dòng tiền ngắn hạn. Vì vậy, một hệ thống giao dịch chỉ dựa trên một khung thời gian duy nhất thường không đủ — bạn có thể đúng hướng nhưng vẫn lỗ chỉ vì vào sai nhịp.
Python không chỉ là một ngôn ngữ lập trình phổ biến — trong lĩnh vực tài chính định lượng và giao dịch tự động (quant trading), nó đã trở thành công cụ chủ lực. Nhờ hàng loạt thư viện mạnh mẽ, lập trình viên và nhà đầu tư giờ có thể biến ý tưởng chiến lược thành mô hình thực thi — từ phân tích dữ liệu, backtesting tới triển khai live trading.
Một trong những quyết định tưởng chừng đơn giản nhưng lại ảnh hưởng lớn nhất đến kết quả giao dịch — là việc chọn khung thời gian (time frame). Hầu hết các trader, đặc biệt là người mới, đều bắt đầu với câu hỏi: “Tôi nên giao dịch khung nào — 1 phút, 5 phút, hay khung ngày?” Thực tế, không có “khung thời gian tốt nhất”. Thị trường không quan tâm bạn vào lệnh ở 9h30 hay nắm giữ đến tháng sau. Cái thị trường phản hồi chỉ là xác suất và hành vi giá trong khung mà bạn chọn.
Thị trường tài chính là nơi con người, tâm lý và dữ liệu va vào nhau. Mỗi chu kỳ lại tạo ra những người thắng lớn, và để lại bài học cho những người đến sau. Nếu nhìn lại hơn 100 năm lịch sử, có một nhóm nhỏ trader đã để lại dấu ấn đến mức dù bạn đang làm trading định lượng, discretionary hay macro thì triết lý của họ vẫn còn nguyên giá trị. Dưới đây là 10 trader mà bất kỳ ai nghiên cứu thị trường nghiêm túc cũng nên hiểu rõ. Không chỉ để ngưỡng mộ, mà để rút ra cách họ tư duy về rủi ro, xác suất, và tâm lý con người.
Rủi ro thị trường (market risk) là rủi ro hệ thống ảnh hưởng đồng thời đến nhiều tài sản — không thể loại bỏ hoàn toàn nhưng có thể quản trị. Bài này trình bày phân tích chuyên sâu về bản chất các loại rủi ro thị trường, phương pháp đo lường chính, rồi đi vào 5 chiến lược giảm thiểu (risk tolerance, đa dạng hoá, hedging, giám sát liên tục, và tầm nhìn dài hạn). Cuối bài có phần cài đặt kỹ thuật và khuyến nghị quản trị.
Nhiều người nghĩ rằng xây dựng một chiến lược định lượng chỉ đơn giản là kết hợp vài chỉ báo kỹ thuật, chạy backtest và chọn ra mô hình có đường equity “đẹp”. Nhưng thực tế thì khác xa — một chiến lược có thể tồn tại ngoài thị trường thật cần một quy trình rõ ràng, có kiểm định và giới hạn rủi ro ở từng bước.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!