17/04/2024
13,482 lượt đọc
Underfitting (chưa khớp) là hiện tượng khi mô hình xây dựng chưa có độ chính xác cao trong tập dữ liệu huấn luyện cũng như tổng quát hóa với tổng thể dữ liệu. Khi hiện tượng Underfitting xảy ra, mô hình hoạt động kém trên cả dữ liệu huấn luyện và dữ liệu mới vì nó thiếu khả năng tìm hiểu các mối quan hệ phức tạp.
Trong giao dịch thuật toán, underfitting có thể dẫn đến các quyết định đầu tư không hiệu quả vì mô hình không đủ khả năng phân tích và phản ứng với các tín hiệu thị trường phức tạp. Điều này có thể khiến các chiến lược giao dịch dựa trên mô hình này bỏ lỡ những cơ hội lớn hoặc không tránh được rủi ro thị trường.

Trong giao dịch thuật toán, việc lựa chọn một mô hình phù hợp với bản chất của dữ liệu là rất quan trọng. Sử dụng mô hình quá đơn giản, như hồi quy tuyến tính cho dữ liệu có mối quan hệ phi tuyến, có thể dẫn đến underfitting, khiến mô hình có độ chệch thấp nhưng phương sai cao. Để giải quyết vấn đề này, các nhà giao dịch nên lựa chọn mô hình phù hợp với đặc tính và phân phối của dữ liệu, có khả năng xử lý các đặc điểm và tương tác liên quan đến nhiệm vụ dự đoán. Việc so sánh các mô hình khác nhau bằng cách sử dụng các chỉ số như R bình phương, sai số bình phương trung bình hoặc độ chính xác là cần thiết để chọn ra mô hình tối ưu nhất cho giao dịch thuật toán.
Việc lựa chọn mô hình không chỉ dựa trên hiệu suất mà còn cần đảm bảo rằng mô hình có khả năng thích ứng và tổng quát hóa tốt trên dữ liệu mới, không chỉ tối ưu trên dữ liệu lịch sử mà còn hiệu quả khi áp dụng vào giao dịch thực tế.
Điều chỉnh (Regularization) là một phương pháp thường được áp dụng trong xây dựng mô hình học máy để giảm thiểu biến động của mô hình, bằng cách đưa ra hình phạt cho các tham số đầu vào có hệ số lớn. Các kỹ thuật điều chỉnh khác nhau như L1, Lasso hay dropout được sử dụng để làm giảm nhiễu và loại bỏ các điểm dữ liệu ngoại lai khỏi mô hình. Tuy nhiên, một vấn đề có thể xảy ra khi áp dụng điều chỉnh quá mức là làm cho các đặc điểm dữ liệu trở nên quá đồng nhất, khiến mô hình không còn khả năng phát hiện được xu hướng chủ đạo của dữ liệu. Điều này có thể dẫn đến tình trạng underfitting, nơi mô hình không đủ phức tạp để hiểu đúng bản chất của dữ liệu. Bằng cách giảm bớt mức độ điều chỉnh, chúng ta có thể giới thiệu thêm độ phức tạp và biến động vào mô hình, từ đó cải thiện khả năng huấn luyện và hiệu suất của mô hình.

Việc kết thúc quá trình huấn luyện sớm có thể dẫn đến tình trạng underfitting, khi mô hình chưa đủ “thời gian” để “học” hết các mẫu trong dữ liệu. Do đó, việc kéo dài thời gian huấn luyện có thể giúp tránh được tình trạng này, cho phép mô hình phát triển đầy đủ khả năng của mình. Tuy nhiên, điều cực kỳ quan trọng cần lưu ý là cần tránh tình trạng huấn luyện quá mức, hay còn gọi là overfitting, nơi mô hình quá phù hợp với dữ liệu huấn luyện mà mất đi khả năng tổng quát hóa trên dữ liệu mới. Việc tìm kiếm một sự cân bằng giữa huấn luyện đủ và quá mức là chìa khóa để đạt được hiệu suất tối ưu.
Các đặc điểm dữ liệu được lựa chọn cho mô hình cần phải phản ánh đúng các yếu tố ảnh hưởng đến thị trường. Trong giao dịch thuật toán, việc bổ sung các đặc điểm mới hoặc cải thiện chất lượng của các đặc điểm hiện tại (ví dụ, thông qua kỹ thuật tạo đặc điểm mới) có thể giúp mô hình phát hiện tốt hơn các mẫu thị trường và cải thiện khả năng dự đoán.
Ví dụ, trong một mạng nơ-ron, có thể tăng số lượng nơ-ron ẩn hoặc trong một mô hình rừng ngẫu nhiên, có thể tăng số lượng cây để thêm độ phức tạp và cải thiện khả năng dự đoán của mô hình.

| Khía cạnh so sánh | Mô hình Underfitting | Mô hình Overfitting |
| Loại mô hình | Mô hình quá đơn giản | Mô hình quá phức tạp |
| Độ chính xác | Không chính xác cho cả tập huấn luyện và tập kiểm thử | Chính xác cho tập huấn luyện nhưng không cho tập kiểm thử |
| Chỉ báo | Độ chệch cao do không học đủ, phương sai thấp vì thiếu đa dạng | Lỗi huấn luyện do học quá kỹ và phương sai cao do phức tạp quá mức |
| Phát hiện | Dễ nhận biết thông qua lỗi lớn khi huấn luyện và kiểm thử | Khó phát hiện hơn mô hình underfit nhưng được chẩn đoán khi lỗi huấn luyện thấp và lỗi kiểm thử/kiểm định cao |
| Cách giải quyết | Mô hình phức tạp hơn, giảm bớt điều chỉnh, thêm nhiều đặc trưng | Mô hình đơn giản hơn, tăng điều chỉnh, giảm số lượng đặc trưng |
0 / 5
Trong tài chính, chiến lược mean reversion (quay lại giá trị trung bình) là một trong những chiến lược giao dịch lâu đời và phổ biến nhất, đặc biệt trong các thị trường có biến động mạnh. Cốt lõi của chiến lược này là giả thuyết rằng sau khi giá của một tài sản có những biến động mạnh (tăng hoặc giảm), giá sẽ có xu hướng quay lại mức giá trung bình trong dài hạn. Tuy nhiên, chiến lược này không chỉ dựa vào các phân tích kỹ thuật hay lý thuyết giá trị tài sản mà còn liên quan mật thiết đến việc cung cấp thanh khoản – một yếu tố quan trọng trong việc xác định sự biến động của giá cả và tạo ra cơ hội lợi nhuận.
Khi người ta nói đến may mắn, đó thường là cách chúng ta giải thích những kết quả mà chúng ta không thể lý giải một cách đơn giản. Chúng ta chấp nhận nó như một sự ngẫu nhiên tuyệt vời mà cuộc sống mang lại – như trúng xổ số, thắng lớn trong một cuộc chơi, hay bỗng nhiên nhận được cơ hội lớn trong công việc. Nhưng nếu nhìn nhận sâu hơn, chúng ta sẽ thấy rằng may mắn chỉ là một phần của xác suất.
Trong quantitative trading, việc dự đoán xác suất của một lệnh giao dịch thành công (hay thua lỗ) là một yếu tố quan trọng. Một trong những công cụ phổ biến được sử dụng để dự đoán xác suất này chính là logistic regression. Mặc dù có tên gọi là “regression” (hồi quy), logistic regression lại được thiết kế đặc biệt để giải quyết các vấn đề phân loại, tức là dự đoán xác suất của sự kiện nhị phân (như "win"/"loss", "success"/"failure").
Nếu bỏ hết “mỹ từ” đi, long–short đơn giản là cách tách phần thị trường chung (beta) ra khỏi phần khác biệt do mô hình (alpha). Thay vì chỉ mua những gì mình thích, ta vừa long thứ mình cho là sẽ chạy “tương đối tốt hơn”, vừa short thứ mình cho là sẽ chạy “tương đối kém hơn”, rồi ghép lại thành một danh mục gần như trung hòa với thị trường.
Trong lĩnh vực giao dịch tài chính, việc phát hiện sự thay đổi chế độ của thị trường (regime change) đóng vai trò quan trọng trong việc xác định xu hướng và điều chỉnh chiến lược giao dịch. Hai mô hình phổ biến để phát hiện sự thay đổi chế độ là Breakout Model và Crossover Model. Cả hai mô hình này đều được ứng dụng rộng rãi trong các chiến lược giao dịch tự động (quant trading) và có thể được tối ưu hóa để sử dụng hiệu quả tại thị trường Việt Nam. Trong bài viết này, chúng ta sẽ tìm hiểu sâu về hai mô hình này, cách áp dụng chúng, và cách phát hiện sự thay đổi chế độ trong thị trường tài chính Việt Nam.
Để hiểu được lý do tại sao nến Nhật (Japanese Candlestick) lại là công cụ mạnh mẽ trong giao dịch, ta cần bắt đầu từ khái niệm cơ bản. Mỗi cây nến đại diện cho 4 giá trị quan trọng trong một khoảng thời gian nhất định (tùy thuộc vào khung thời gian mà trader chọn: 1 phiên, 1 giờ, v.v.):
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!