29/12/2024
3,261 lượt đọc
Mean reversion (xu hướng quay trở về mức trung bình) là một hiện tượng được quan sát trong nhiều lĩnh vực, từ tự nhiên (như mực nước sông) đến thị trường tài chính và hiệu suất của vận động viên. Bài viết dưới đây QM Capital sẽ trình bày khái niệm này một cách tương đối toàn diện, kèm theo một số ví dụ kinh điển và phương pháp kiểm chứng.
.webp)
Một ví dụ điển hình cho hiện tượng mean reversion trong tự nhiên là mực nước tối thiểu hằng năm của sông Nile giai đoạn 622 – 1284 SCN. Hiện tượng trên cho thấy, mặc dù có thể tăng hoặc giảm đột ngột, mực nước cuối cùng cũng quay về mức gần với trung bình. Về mặt lý thuyết, điều này xuất phát từ các yếu tố khí hậu, địa chất và chu kỳ tự nhiên, nhờ đó hình thành xu hướng “kìm hãm” những biến động quá mức theo thời gian.
Mean reversion không chỉ xuất hiện trong lĩnh vực tự nhiên mà còn được đề cập đến trong các tình huống xã hội và thể thao. Daniel Kahneman (tác giả từng đạt giải Nobel Kinh tế) đưa ra ví dụ về “Sports Illustrated Jinx”: Vận động viên được lên trang bìa Sports Illustrated nhờ thành tích vượt trội trong một mùa giải có xu hướng thi đấu kém hơn ở mùa tiếp theo.
Thoạt nhìn, điều này có thể được lý giải như một “điềm xui” khó hiểu. Tuy nhiên, xét theo khía cạnh khoa học, việc trở về mức trung bình sau một mùa thi đấu xuất sắc là khá tự nhiên: khi vận động viên đã đạt mức phong độ vượt xa “năng lực trung bình”, việc thành tích giảm nhẹ ở mùa sau là hoàn toàn dễ hiểu. Từ góc độ thống kê, xác suất duy trì liên tục một thành tích cao hơn hẳn tiêu chuẩn của chính mình là tương đối thấp, và do đó, vận động viên thường quay về xung quanh giá trị trung bình của năng lực.
Một trong những câu hỏi được quan tâm nhiều nhất là liệu có thể ứng dụng hiện tượng mean reversion vào giao dịch tài chính để “mua thấp, bán cao” một cách dễ dàng hay không. Về lý thuyết, nếu giá của một tài sản thường quay về mức trung bình, nhà đầu tư chỉ cần mua khi giá xuống dưới mức trung bình và bán khi giá tăng lên ngang mức trung bình để thu lợi nhuận.
Tuy nhiên, thực tế cho thấy phần lớn chuỗi dữ liệu về returns (lợi nhuận) của thị trường tài chính lại không có tính mean reversion rõ rệt. Thay vào đó, chúng thường được xem như những “random walk” (quá trình ngẫu nhiên), khó dự báo. Trong trường hợp này, giả thuyết mean reversion trở nên kém hữu ích vì giá tài sản không nhất thiết phải “hồi” về một ngưỡng cố định.
Mặt khác, vẫn tồn tại một số ít chuỗi giá (hoặc tổ hợp tài sản) có hành vi mean reversion. Trong thực tế, đây chính là nền tảng cho các chiến lược pairs trading hay statistical arbitrage. Những chiến lược này kết hợp hai (hoặc nhiều) tài sản vào một danh mục có mối quan hệ cointegration (kết hợp tuyến tính), nhờ đó “danh mục” chung này có xu hướng dao động quanh một mức trung bình nào đó. Nhà giao dịch sẽ tìm cách mua-bán đồng thời (long-short) hai tài sản để thu lợi từ việc “khoảng cách” giữa chúng giãn ra – rồi trở lại mức trung bình.
Để xác định liệu một chuỗi dữ liệu có mean reversion hay không, các nhà phân tích thường sử dụng một số bài kiểm tra thống kê nhằm đánh giá tính dừng (stationarity) của chuỗi:
Các bài kiểm tra này hỗ trợ xác định cơ hội giao dịch mean reversion, đồng thời giúp tránh đặt niềm tin sai lệch vào các chuỗi dữ liệu thực chất chỉ là biến động ngẫu nhiên.
Trong Algorithmic Trading: Winning Strategies and Their Rationale, tác giả cũng đề cập khả năng tạo ra các chuỗi mean reversion nhiều hơn cả số lượng tài sản giao dịch trên thị trường. Bằng cách kết hợp hai (hoặc nhiều) chuỗi giá riêng lẻ (mà tự thân chúng không mean revert), người ta vẫn có thể thiết lập một danh mục tổng hợp mean reverting. Phương pháp phổ biến là sử dụng Johansen Test để tìm hệ số kết hợp giữa các tài sản sao cho kết quả cuối cùng (danh mục) có tính dừng.
Khi xác định được danh mục mean reverting, nhà giao dịch có thể áp dụng các chiến lược “long-short” (pairs trading) nhằm hưởng lợi từ việc danh mục (hoặc chênh lệch giá) điều chỉnh trở lại mức trung bình. Tuy nhiên, chiến lược này cũng đối mặt với nhiều rủi ro, chẳng hạn sự thay đổi cấu trúc trong tương quan hai tài sản hoặc các sự kiện kinh tế, chính trị bất ngờ có thể làm “thay đổi” mức trung bình cũ.
Hiện tượng mean reversion nhắc nhở chúng ta rằng nhiều biến động, dù là mực nước sông qua hàng trăm năm hay phong độ của vận động viên, đều xoay quanh giá trị trung bình. Tuy nhiên, việc tận dụng mean reversion để xây dựng chiến lược đầu tư đòi hỏi hiểu biết sâu sắc về tính dừng và đặc tính của thị trường. Không phải tất cả chuỗi dữ liệu tài chính đều thích hợp cho ý tưởng “mua thấp, bán cao” dựa trên giả thuyết mean reversion, do tính ngẫu nhiên và phi tuyến của thị trường.
Dẫu vậy, đối với những trường hợp chuỗi giá hoặc cặp tài sản có tính mean reversion rõ rệt, việc kết hợp phân tích thống kê (ADF, Johansen, Hurst exponent, v.v.) với kinh nghiệm thực tiễn có thể mang lại cơ hội sinh lời bền vững. Trên hết, hiểu rõ mean reversion cũng giúp chúng ta nhìn nhận các hiện tượng trong tự nhiên, thể thao và xã hội một cách sáng tỏ hơn, thay vì coi mọi biến động là ngẫu nhiên hoặc không có quy luật.
Hãy xây dựng và kiểm thử chiến lược giao dịch phái sinh của bạn trên nền tảng QMTRADE trước khi sử dụng tiền thật để tránh những rủi ro không đáng có.

0 / 5
Trong giao dịch theo hệ thống, khoảnh khắc khó chịu nhất không phải là một phiên thua lỗ lớn, mà là một chuỗi thua đều đặn kéo dài. Ở thị trường Việt Nam, đặc biệt với phái sinh VN30F1M, sáu tháng liên tục không hiệu quả là đủ để khiến phần lớn trader bắt đầu nghi ngờ mọi thứ mình đang làm.
Một trong những giả định ngầm nhưng có ảnh hưởng lớn nhất đến cách nhà đầu tư tiếp cận thị trường là việc coi thị trường tài chính như một cỗ máy. Theo cách nhìn này, nếu hiểu đủ rõ các biến số đầu vào, nếu xây dựng được mô hình đủ tinh vi, ta có thể dự đoán chính xác đầu ra – giá sẽ đi đâu, khi nào, và bao xa.
Mô hình head and shoulders (vai đầu vai) là một trong những mô hình phân tích kỹ thuật cơ bản nhưng rất mạnh mẽ trong việc dự đoán xu hướng thị trường. Mô hình này rất phổ biến trong các giao dịch chứng khoán cơ sở và phái sinh, đặc biệt là tại các thị trường có độ biến động cao như Việt Nam. Được coi là mô hình đảo chiều, head and shoulders thường xuất hiện sau một xu hướng tăng, báo hiệu rằng giá có thể đảo chiều giảm, hoặc có thể xuất hiện ngược lại sau một xu hướng giảm, báo hiệu sự đảo chiều thành tăng.
Khi trader mới bước vào thị trường, đặc biệt là phái sinh VN30, một trong những câu chuyện được kể nhiều nhất là: “Có market maker kéo giá quét stop”. Sau vài lần bị hit stop rất gọn, đúng đỉnh đúng đáy, cảm giác đó là hoàn toàn thật. Nhưng nếu dừng lại ở mức “có ai đó săn mình”, thì rất dễ đi lạc hướng.
Nếu phải mô tả thị trường tài chính giai đoạn 2026 bằng một cụm từ, thì đó là: khó định hình nhưng không hề yên ắng. Sau nhiều năm thị trường bị dẫn dắt bởi những câu chuyện lớn – từ COVID, kích thích tiền tệ, lạm phát cho tới AI – nhà đầu tư dần nhận ra một vấn đề: những narrative này không còn vận hành theo đường thẳng. Lãi suất không tăng mạnh nữa nhưng cũng không quay về mức cực thấp. Lạm phát hạ nhiệt nhưng vẫn dai dẳng. AI tiếp tục thay đổi nền kinh tế, nhưng lợi nhuận không còn phân bổ đồng đều như giai đoạn đầu. Trong một môi trường như vậy, đầu tư dựa trên một kịch bản duy nhất trở nên cực kỳ mong manh.
Với rất nhiều người bước vào trading định lượng, data mining gần như là phản xạ tự nhiên đầu tiên. Bạn có dữ liệu giá, có indicator, có máy tính đủ mạnh, vậy thì việc “quét” hàng trăm, hàng nghìn tổ hợp tham số để tìm ra chiến lược có lợi nhuận nghe rất hợp lý. Cảm giác này đặc biệt mạnh với những ai có nền tảng kỹ thuật: code chạy được, backtest ra equity curve đẹp, drawdown thấp, Sharpe cao – mọi thứ trông rất khoa học và thuyết phục.
Được nghiên cứu và phát triển bởi các chuyên gia từ QMTrade và cộng đồng nhà đầu tư chuyên nghiệp.
Truy cập ngay!